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Abstract:  

The general properties of compact sets are looked at in the study such as compactness implies 

closedness, compactness implies bounded. In order to achieve these we briefly looked at metric 

spaces, normed vector spaces from which we considered metric that is being induced by a norm. 

Considered also is the convergence property of some sequences chiefly Cauchy sequence on 

which the completeness concept of a set consequently continuity and boundedness properties are 

established and property of a finite dimensional compact sets. Everything looked at is concise.  
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Introduction 

Unlike in other fields, before a set can be 

referred to as a space in mathematics it must 

satisfy some criteria (properties on which it 

should be defined called its axioms), hence a 

space is a set with structures. Metric space is 

one of the fundamentals of other space as 

other space inherit properties from it 

forming a hierarchy, for instance all normed 

vector spaces are also metric spaces, 

because the normed vector induces a metric 

on the normed vector space such that: 

 (   )  ‖   ‖ for         

In the real line ℝ the distance between two 

points     is the absolute value of their 

difference defined  (   )   |     

 

 

   | while for vectors     the distance is the 

norm of their difference defined  (   )   

 ‖       ‖. The minimal property attained 

by distance is defined by a metric function. 

In addition, one has little or no control over 

unbounded set and absolutely nothing to say 

on space that is discontinuous everywhere 

around it neighbourhood. Thus, a compact 

set or space as the case may be gives a well 

behave set or space as one could define 

some standard properties on such a space 

and this is what we seek to verify. In this 

section, we introduce some spaces which are 

used in the study. 

Normed Vector Space 

A normed vector space (  ‖   ‖) is a vector 

space   equipped with a norm  ‖  ‖ i.e a 

function ‖  ‖     ℝ       )    
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‖  ‖ such that for all       and     

have the following axiomatic definitions 

i. ‖  ‖        

 (           ) 

ii. ‖   ‖   | |‖  ‖   

 (                    ) 

iii. ‖   ‖  ‖  ‖   ‖  ‖  

 (             ) 

iv. ‖  ‖                 

 (                     ) 

where   is a real or complex vector space 

and   a field of real or complex numbers. 

Closedness of Sets 

A sequence (  ) of a subset   of a metric 

space such that      for each  , and 

     , then   is called a limit point of    

If   contains all its limit points then it is said 

to be closed. 

Bounded of Sets 

A metric space (    ) is called bounded if 

there exists a number   such that 

 (    )

                                                     

Proposition 1.1 

Every normed vector space X is a metric 

space, relative to the natural metric d 

defined by  (   )  ‖    ‖ for        

Furthermore for any       in   and for all 

     we have ‖ ‖   (   ) as well as 

i.  (       )   (   )  

 

                        

ii.  (     )  | |  (   )  
 

                      

Proof 

It can be easily verified that the axioms for a 

metric hold for e.g.  (   )   (   )  

 (   ) follows immediately by writing 

(   )  (   )  (   ) so that 

‖     ‖   ‖(   )  (   ) ‖ 

          

‖     ‖  ‖     ‖ 

i.  (            )                 

‖(   )  (   )‖ 

                                            

‖   ‖ 

                                            

‖   ‖ 

                                                         (   ) 

ii.  (     )                             

‖     ‖ 

                                           

‖  (   )‖ 

                                           

| |‖   ‖ 

                                                       

| |  (   ) 

Every normed vector space is also a metric 

space if a metric is define via a norm as 

follows 
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 (   )    ‖       ‖ 

In particular this implies ‖    ‖   

  (   )      for all      . However, not 

every metric stems from a norm, for 

example the discrete metric on   is not 

induced by a norm. 

Result 

Compactness can be described invariantly in 

many ways but in these subject we define it 

in two ways  

Compact space in terms of sequence 

A subset   of a metric space   is compact if 

every sequence of points    in    there is a 

subsequence    
 which converges to a point 

  in   . 
 

Compact space in terms property of 

closed and bounded property 

Theorem 2.1  

Compact set are closed and bounded. 

Proof 

First to show that compact sets are closed, 

we must show that it contains all its limit 

points, Let   be a compact set then any 

sequence of points    in    has a 

subsequence    
which converges to a point 

in  , let that point be  . Let   be a limit 

point of  , then   contains a sequence 

converging to   and all subsequence 

converges to  . Since all sequence and 

subsequence of   converges to  , then 

   . Hence,   is compact and contains all 

its limit points. 

Second to show that compact set are 

bounded, a set is bounded if for any 

sequence (  ) there is an integer  , such 

that  ‖  ‖   , if   is not bounded then 

‖  ‖    implying a divergence 

contradicting definition of compactness.  

 Closed and bounded sets does not 

necessarily imply that the sets are compacts 

e.g.; 

1. The closed unit ball ‖    ‖    in 

        is bounded yet not compact 

since no subsequence of it can 

converge (Cauchy convergence 

criterion not satisfied). 

2. The standard basis vector    

(        )    (         ) etc 

have no convergent subsequence, 

and also 

3. The real number   ℝ        

with the discrete metric  (   )    

for      (   )   . 

4. The set of rational numbers  . 

 Even though compact sets are closed and 

bounded, not all closed and bounded sets are 

compact. 

In general, closed and bounded set are not 

compact, but in the Euclidean space     

they-are. 

       

                                                

                    
 

Discussion 

We were able to define compact space based 

on sequence also on closed and 
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boundedness. Hence we can define a 

normed space to be compact based on 

sequence as; 
 

Compact Normed Vector Space 

Let   be a normed vector space and   a 

subset of    then   is compact if every 

finite sequence of elements of   has a 

subsequence which converges to an element 

of  .  

We check to see if normed spaces are closed 

and bounded. 

In definition of boundedness we say that a 

metric space (   ) is called bounded if 

there exists a number   such that  (   )  

                   

It is also a known fact proven from 

Proposition (1.1) that every normed vector 

space is a metric space define as  (   )  

‖     ‖                 

Since  (   )     and  (   )  

‖     ‖ this implies  (   )  

‖     ‖        i.e. ‖     ‖    .  

Bounded Normed Space  

A normed vector space   is said to be 

bounded if there exist a number   such that 

‖     ‖                     

Closed Normed Space  

A normed vector space   is said to be 

closed if it contains all its limit points. 

Since normed vector space can be closed 

and bounded, therefore normed vector 

spaces are compact. 

Convergence Sequence in Normed Spaces 

A sequence (  ) of a normed space  , is 

said to converge if given any    , there is 

a number   such that            for all 

   . We say      as    . 

Theorem 3.2 A convergent sequence in    

can have at most one limit. 

Proof 

A sequence    has a limit   if for any      

there is an  ( ) such that |     |      for 

all      ( ) written as      .  

Suppose that by contradiction the sequence 

   has two limit   and    such that  

|     |  
 

 
  for all      ( ) 

|      |  
 

 
 for all 

     ( ) 

By triangle inequality we have; 

|    |  |     |  |      | 

        |     |  |      |     
 

 
 

 

 
     

Since it holds for any      then we have 

that 

|    |    

Hence      

Theorem 3.3 Bolzano-Weierstrass 

Every bounded sequence in ℝ  has a 

convergent subsequence. 

Proof 
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We note that ℝ  is finite dimensional 

Banach space and compact. Thus, from 

definition under section (2.1) the result 

follows immediately since every sequence in 

ℝ  converges to element in it and since it is 

finite, it is bounded. The convergent 

subsequence comes from the fact ℝ  is 

compact. 

Cauchy sequence of a normed vector 

space 
 

A sequence (  ) of a normed vector space 

 , is said to be Cauchy sequence of a 

normed vector if given any    , there is a 

number   such that             for all 

     . 

Theorem 3.4 Every convergent sequence in 

a normed space is a Cauchy sequence. 

Proof 

Let ‖      ‖ be a normed space and (  ) be 

a sequence converging to a point        

i.e.,     , for any 

                                                

‖     ‖  
 

 
 for     . 

Let        . Then ‖     ‖  ‖    ‖  

‖    ‖  ‖    ‖  ‖    ‖  
 

 
 

 

 
   

 (  ) is Cauchy. 

We note that although all convergent 

sequence are Cauchy yet not all Cauchy 

sequence are convergent. 

For instance let   (   ) be an open 

interval and         be a close interval 

with the usual norm defined on them, let 

   
 

 
  be a sequence, this sequence is 

Cauchy converging to a point 0 which is in 

  but not in  . 

         but 

   (   )  

i.e., It converges to a point in    and a point 

not in  . Hence not all Cauchy sequence are 

convergent. 

Careful observation on why this Cauchy 

sequence is not convergent is due to the 

domain of interval on which it is defined. So 

we postulate the next theorem; 

Theorem 3.5 Every Cauchy sequence in a 

normed space in ℝ  are convergent if and 

only if the domain on which the interval is 

defined is compact. 

Proof  

( ) Let (  ) be a Cauchy sequence 

which is convergent then we show that it is 

compact i.e. closed and bounded. Since it is 

a convergent sequence, it converge to one 

point say   which is it limit point and from 

Theorem (3.2) (A convergent sequence in 

   can have at most one limit), therefore it 

contains all its limit points, hence closed.  

Since it is convergent, it is bounded i.e. for 

an integer  , ‖  ‖    else ‖  ‖    

which is divergent and a contradiction to 

being convergent sequence. Hence it is 

compact. 

( ) We assume that the sequence (  ) is 

compact and show that it is convergent and 

subsequently Cauchy. Since it is compact, it 

is bounded. By Bolzano-Weierstrass 

theorem every bounded sequence in ℝ  has 

a convergent subsequence and from theorem 

3 every convergent sequence in a normed 

space is a Cauchy sequence.  
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Conclusion 

In general, Compactness is not hereditary 

because even though (   ) is a subset of 

     , is not a compact subset of       on the 

other hand  it is closed hereditary as any 

closed subset of a compact set is compact, 

the generality of normed space are preserved 

when the domain on which it is defined is 

compact. 
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