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ABSTRACT
The second order initial value problems are generally integrated numerically by development of
numerical methods designed specifically for second order differential equations. In this work, a
symmetric corrector method is presented capable to integrate real-life problems modeled into
second order ordinary differential equations directly. The power series is used as a basis function
which was interpolated and collocation was done at its second derivative of only grid points. This
is to ensure that the hybrid points are at the y — function. The resulting systems of equations is

solved and after necessary simplifications continuous method is obtained. Attempts were also
made to develop predictors of the same order with the method to circumvent the inherent demerit
of predictor methods. The method is of optimal order, symmetric, consistent, and zero-stable. The
discrete method obtained is applied to solve real-life problems with better performance.
Keywords: Symmetric, Optimal method, Differential system, Predictor-Corrector method.
General second order BVP with Dirichlet
boundary conditions

y'=1(ty.y): y(t) =Y, @)=y, 3

INTRODUCTION

In mathematics, mathematical modeling is a
key tool for the analysis of a wide range of
real-world problems ranging from physics
and engineering to chemistry, biology and
even economics using differential equations
Hritonenko and Yatsenko (1999). Many of
the principles, or laws, underlying the
behavior of the natural world are statements
or relations involving rates at which things

General second order BVP with Newmann
boundary conditions

Second-order  system  of  equations

y'=f(tLy.y): Yt) =Y, Y(@) =Yy, (4)

happen and these are expressed in differential
equations.

This research article considered an ideal
symmetric method for direct integration of
general second order with initial and
boundary conditions of ordinary differential
equations (ODEs) of the type;

General second order IVP

y” = f (t’ Y, y,)’ y(to) =Y y'(to) =Y, (1)

Special second-order IVP

y'=f(ty) yt,)=Y,. Yt) =y, (2

y'=f(LYL Y Ya(t) =Ye, Vi) =Y,
V=5 (6LY, )i Y.(t) =Y, Va(t) =Y,
(5)

It is well known that these problems (1-5),
particularly the non-linear ones, may or may
not be solved in a closed form. Even in those
cases, the problems are typically reduced to
systems of first order equations, which can be
solved wusing any equivalent methods.
Numerous authors have discussed these types
of methods, including Olabode and Momoh
(2016), Areo and Adeniyi (2013), and
Kayode and Obarhua (2013), to name a few
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Despite the traditional approach's triumphs,
many authors were drawn to its problems,
which led them to examine the direct method
as an alternative to decreasing order. Obarhua
and Kayode (2016), Kayode and Adeyeye
(2011, 2013), and Ramos and Rufai (2019).
A two-step two-point implicit hybrid
predictor-corector method was presented by
Kayode and Adeyeye (2013) to solve (1)
directly. Ogunfeyitimi and Ikhile (2019)
presented second derivative generalized
extended backward difference formula to
solve stiff order boundary value problems. A
generalized cash-type second derivative
extended backward differential formula was
introduced by Okor et al. (2022) as a
boundary value approach for the stiff system
of type (4). Omole et al. (2023) have also
proposed an algebraic order nine approach
for solving second order boundary and initial
value problems.

Therefore, the methods that these authors
have proposed are unable to directly solve
problems (1-5) on their own, and
furthermore, their order and accuracy are
insufficient to handle these complex
problems. Nevertheless, these authors have
also introduced hybrid points at both
f — function and y — function, which

raises the function evaluations in the
f — function computational effort and, as

aresult, lowers the accuracy of their methods,
Kayode and Adeyeye (2011).

Therefore, this study was motivated by the
setbacks caused by the increase in function
evaluations, reduced order of accuracy. The
interest of this study is to develop method
with hybrid pointsat y — function only for
directly solving (1-5) which is more effective

and accurate in performance by effecting
where
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points in the power series used as basis
function as the approximate solution. The
hybrid points' position is capable of reducing
function evaluation and increase order of
accuracy. Additionally, the proposed method
is made to ensure that the starting methods
and the corrector (primary) method have the
same order of accuracy.

Derivation of the Method

This section shows the derivation of a
continuous symmetric implicit two-point
hybrid method for the solution of problems
(1-5). Consider the equally spaced points on
the integration interval given by

A=Xy <X < <Xy, <Xy =D, (6)
with a specified positive integer step size
given by

h:Xn+l_Xn1n:11"';N; N :b;ha.
Assuming the power series as the

approximate solution
2(k+1)

Y00 =3 ax. ™)

The second derivative of (7) as compared
with (1) gives

2(k+1)

f(x vy, y)= > (i(i-Dax'?).  (8)

j=2

Equation (7) is interpolated at the grid and
off-grid points x=x,,,i=0,4,1,7 where
O<A<land 1<7<2 . Equation (8) was
collocated at three  grid  points
X=X,,1=0,1,2 which resulted and
expressed inform of matrix equation given

below:
AB=C, 9)
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x, 12x>  20x> 30x! a, f
X1 12X:+1 20X§+1 3OX:+1 q fn+l
Xoi2 12X§+2 ZOX:+2 30X:+2 a, fmz
XX XX B=|a, Y,
X Xo Xo X 2, Yies
Xr?+1 X:+1 X:+1 X:+1 Xr?+1 a5 Yon
Xoo Xoe Yoo X Xo % Yiee

The values of a;'s, j=0(1)6 were determined, using Gaussian elimination method to be

Substituted back

1

into (7) and using the transformation in Obarhua (2019),

dad 1

t:ﬁ(x—xmk_l),&:E and simplifying the result gives a continuous hybrid linear

multistep method given as;

ACEDIACIANEE CICIAETACIAS SLD WO

(10)

with the coefficients «;'s, 0;'s and S;'s as functions of t obtained to be

o, (t) =

a1('[) =

(2t —1)(r — 2t)(A - 21)

t°(48A°7 + 48A7° —19247 +128 + 482° +487° —1921% —192¢7

~107 +324° +327° —984% —987% +120) + (161° +167° —651°

~4917% +161°c +1647°)

+1281 +1287) +t*(242°7 + 2417° —961° — 967° + 36417 + 3647°
~1964 —1967 —1921°7 —192A7° + 42817 + 241°7* — 260) + t(121°¢?
+122°7° — 22847 —96A°7* —48A°r —4847° + 21447 + 2142%7 104

—657% —5A7 +61°° + 911°¢% —244°7° - 242°7% + 601 + 607 — 494°¢

2t(2t —1)(z - 2t)(

604°7 +6047% —492°% —492°7° +164%¢% +164°¢" +911°¢° — 244°*
—-242°t° +6%c* =51%c* —651°c —6517° +161°c +1617"

t3(128 + 487° —19272 +1287) +t° (260 — 967° + 36472) +t(—107 + 327
~987% +120) + (167° — 657 + 607)

|

|

A4 -1)(A - 7)(

601 + 607 —494°r — 49472 +16A°%r +1647° +911%72 — 244%73
—242%% +64%° — 517 — 6517 —657% +164° +167°
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t*(481°7 + 48A1% — 24047 — 2407° — 240A° + 484° + 487° + 3204 + 3207)
+t%(242°%7 + 2407° — 240A%7 — 2404 7% + 24A°7* + 74047 +5801° +5807°
—1204% —1207% = 7204 - 7207) + t(122°7% +122°7% - 72047 —1201°7?
—604°r —60A7° +3704°7 +37047° + 4004 + 4007 +804° +807° —3604°
—-3607°) + (1454%7° —304°7% —304°7* —1804°r —180A7% + 404°r + 4047°
+200A7 +64°7%)

2t(z - 20)(4 - 2t)

2] (t) =

(r-1)(1-1) 604 + 607 —492°7 — 49172 +164°7 +1647° +914%72 —244%73
T J— —
—242%%* +61°° - 517 —654% — 6572 +164° +167°

t3(128 + 484° —1921% +1281) +1°(~260 — 964° + 364.1° —196.1)
2t(2t —1)(4 - 2t)

+t(-104 +324% —984% +120) +161° —651° + 601
601 + 607 —494°r —4947° +164°%7 +1647° +914%7% — 24/12T3]

a2 (t) =
(r-D)(A-1)
—242%7% +61°1° —5A7r —654% — 6572 +164°% +167°
t?(—604°7 — 60472 +384 +124%¢% + 29247 + 8417 + 847> — 3681
—3687) +t(-301°7* —67847 +146A°7r +14617° + 7821 + 782r
t(2t —1)(z — 2t)(1 - 2t)
—1844% —1847% —780) + (961° +967° + 39147 + 214%7° —924%¢
—9217% —3904 — 3907 + 360)
6 604 + 607 —494°7 —49A7° +161°7 +1617° + 914°¢° — 241°7°
—242°7%* +61%° =547 —651% —657% +164° +167°

ﬂo (t) =
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t*(-361°7 —36A7% +124°¢° + 7647 —364% —367% +1121 +1127)
t(2t —2)(z — 2t)(A — 2t)| +t(-181%¢% — 4847 + 38127 + 38472 —1604 — 1607 + 5642 + 5672)
+(=8047 — 94272 + 284%7 + 2847%)
604 + 607 —494°7 —4947% +16A°7 +1647° + 911 °¢% — 242°7°
—242°7* +61°c° ~51r —654° — 6577 +161° +167° J

ﬂl (t) = [

t2 (12427 —1247% + 447 +124%72 —122% —127% +161 +167)
t(2t —1)(z — 2t)(A — 2t)| +t(-61°7° + 647 +24°7 + 247> =104 —107 + 84% +87?)
+(-5A7 =31%1° +4A% 1 + 4A17)
604 + 607 —494%7 — 49477 +16A° +16A7° + 914272 — 24%1

ﬁz (t) =
(—241%2 +64%°% —5ir —651% —6572 +164° +167°

(11)
The first derivatives of the coefficients are

t°(11524°7 +115247° — 460847 +11524° +11527° — 46084° — 46087 + 30724 + 3072
+3072) +t*(~4804°7 — 48047° —4804°7° — 4804* —4807* —4804° —4807° + 792047 +
79207° — 64801 — 64807 — 4804°7 — 48047% + 792047 — 6480) + t*(—24004°7 — 240047
+9604%7% + 9604 +9607* — 24004° — 24007° — 240042 — 240077 + 40001 + 40007 +
9604°7 +96047° — 240017 + 4000) +t? (72017 — 48012 — 720 — 4804* — 4807 +
16804° +16807° — 7204% — 7207% — 7201 — 7207 — 4804°7 — 48047° +16801%7 +
1680A72) + (6A°7* —244%c* —242°¢% + 914°%7° +164%¢* +164%7% +114%¢% —494°7° —

, 4947 +161°r +16A7* + 6047 +604% +607° —651° —657° +164* +167%)

%(t) = 1 {60(A + 1) —49(A%r + A1°) +16(1°r + A7) = 24(A%7° + A°0%) +16(1° + %) —65(1% + 77)
T(—5M’+9lﬂ,21'2 +64°7°} J

t°(-3072 —11527° + 46087° —30727) +t* (6480 + 4807" +4807° —79207* + 64807)
2| +t>(—4000 —9607* + 24007° —40007) +t*(720 + 4807* —16807° +7207° +7207)
, +(—607° +657° —167%)
6= AA=1)(A=1){60(A + 1) —49(A%T + A7%) +16(A°r + A7°) = 24(A% 7 + A°7%) +16(A°% + %)
(—65(12 +7%) =517 +914°7% +64°7°} ]
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t°(11524%7 +115247> —5760A7 +11524° +11527° —57607* —57604° + 76804 + 76807)
+t*(~4804°7 — 480A7° + 840017 — 4804°7% — 4801* — 4807 +84004° + 84007 —1440041
~144007) +t°(9604°7 + 9604 7> — 33601°7 — 336047° + 9601°r° + 9601 +9607* —33604°
—33607° + 64004 + 64007) +t° (—4804°r — 48047° + 21604%7 + 216047 — 240047 — 480
A’r? —4804* —4807* + 21604° + 21607° — 24004% — 24007°) + (64°7* —304°c* —304°%¢*

, +1452°%7% + 40A°7" + 40A4°7% + 2004°7% —1804°7% —1804°7%)

a(t)= (t —)(A -D{60(A + 1) —49(A%7 + A7°) +16(A°1 + A7%) — 24(A° 7% + 2%r?) +16(A° + %)
[—65(/12 +7°) =517 +911%7% +64°7°%) ]

t°(-3072 —11521° + 46084° —30721) +t* (6480 + 4804" + 4804° —79204% + 64804)
2| +t3(—4000—9601* + 24004° + 240042 — 40001) +1%(720 + 4804* —16804°% + 7201
+7204) + (—604% +654° —161")
7(r =1)(A - 7){60(1 + 7) —49(A°r + Ar?) +16(A°r + A1°) = 24(A%7° + A1°77)
(+16(/13 +7%)—65(1% +7°) =547 + 911°7° + 61°7°} j

0, (t) =

t°(—28804°7 — 288047° +14016A7 +5761°r° + 40327 + 40324° —176641 — 176647 +18432)
+t*(12004°%¢ +120047° — 4804°7 — 48047% —1824047 — 2401°c% — 2404°7% +9601°7° —
16804° —16807° —16804° —16807° + 309604 + 309607 —38880) + t>(—21441°r — 214417° +
85761°7 +8576A7° — 448047 +961°7° +961°7° +961°r° — 21444°7% +36164° +36167° —
944047 —94407% — 9440 — 94407 + 24000) +t*(6241°r + 62417° — 4116 1%7 — 411647° +
822047 — 216A°7° +6241°1% + 624A°7° —1236A°c° — 22567° — 22561° +82201% +82207° —
43201 — 43207 — 4320) +t(-120A7 +1442A°7° —5761°c° —5761°7° + 21841°1% + 384A°r +
38417° —~11761%c —117617° + 14404 + 14407 + 3841° + 3847° —15601° —15607°) + (360
A1 —212°%% —3914°%7% +922°7° +924°7% +3904°7 + 39047% —964°7r —9647°)

! t —
A 360(A +7) —49(A%7 + A7) +16(A°7 + A7°) = 24(A%7° + 1%¢?) +16(A° + %) —65(A% + 7°)
51t +914%7% +61°%°
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t°(—17284%c —1728A7% + 364847 + 5761°7° —17281% —17287% + 53764 + 53767) +t* (7204°¢
+720A7° +14401°7 + 144047 — 792047 — 2401°%c% — 240A°7° + 4804°¢° +7204° + 7207° +
720A% + 72072 — 86404 —86407) +t°(—11841°r —1184A7° +1376 4% +1376A7° +512017 +
964°7° +961°7% +961°%7° —11844%7% —11844° —11847° + 256012 + 256072 + 25604 + 25607)
+12(3364°%7 +33647° —6244%r —62417° —960A7 —1441°%7° +3364°7% +3364%7° —6241°7° +
3364° +3367° —9604% —96072) + (94°7° +804%7% — 284°7% — 281°7?)

(1) =
A 180(A + 1) —49(A°r + Ar?) +16(A°r + A7°) = 24(A° 7% + °1%) +16(A° + 7°) = 65(1° +7%)
—5Ar+914%% +64°7°

t°(-576A°r —57647° +192A71 +5761°7% —5761° —5767° + 7681 + 7687) +t* (2401°r +
24017° + 4804%7 + 48017° — 48047 — 2404°¢% — 2401°7° + 2404° + 2407° + 2404% +
2407 — 7204 —7207) +t3(—224 1% — 224771° —642A°7 —6447° + 32047 + 96 1°7° + 96
A%t? +964%7° — 22427 1% — 2242° — 2247° +1604° +1607% +1604 +1607) +t*(481°r +
4807 —122°1 —1241° —60A7 —T22°7° + 482°c° +48A°7° —12A%¢c° +481° +48¢° -
6042 —607%) + (3A°r° —4A°r% —44%7° +51%7%)

! t —

A0 360(1 +7) —49(A°7 + A7?) +16(1°r + A1°) = 24(A%7° + A°1%) +16(A° + 7°) —
65(1° +7°) —5A7r +914%¢% +64°7°
(12)
Evaluating (11) and (12) at t =1 yields the discrete scheme
h2

yn+2 = a2 yn+z— + alyn+1 - a1 yn+,1 - ao yn + E (ﬂZ fn+2 - Zﬂl fn+1 + ﬂO fn) (13)
with first derivative

! 1 ! ! ! ! h ’ ! !
Yni2 = 3(62 Yir T OO Y — a1 Yniz — %Yy ) + E (ﬂZ fn+2 - Zﬂl fn+1 + ﬂo fn) (14)
where
0, =(-2(r - 2)(47° +9r* +178r -12))
0, =(2(A-2)(42° +92° +1781-12))

2(r = 2)(A - 2){6A°% +492°7% — 2047 + 4(A°r + A7°) —18(A°c* + A°7°)

a, =

P82 +2%) - 2042 + 72)}

o = —(r=2)(A-2D{2UA°r + A7?) =8(A°r + A7%) —12(A°1% + A°7°) + 347 +194°¢7
|\ +62%° —18(1 + 1)+ 9(A7 + ) 12}
B, =((r=2)(A—2){-6(A7° + A°7) —&(A* +7°) + 6(A— 1) +34°c% +517})
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B =(—(r - 2)(A - 2B0(A” + 2°7) + 20(A* + 7%) — 48(1 —7) ~154°7* —~5247})
By = ((r —2)(A-2D{-6(Ar* + 1°1) +31°c* + 511 —4(A* —7°) + 760(A — 1) — 36}) (15)
0; =(-2(128-167" +24177° - 2527* +1287))

. (2{24047 —48(A7% + A%r) —30(A°r" + 1'%) —180(A°r + A%¢%) + 40(A%c* + A%r?)
“- (—48(/13 +7°) + 240(A% + 7%) —320(1 — 7) + 6A%7* +1451°7° +2001%7%} ]
0y =(2(128-16¢" +24177° — 2527% +1287) )

—2{16(Ar" + %) —49(A7® + A°1) = B53(Ar? + A%7) + 252471 + 1A% +914°7° + 647 ¢
af =| +16(A" + %) —113(A° + 7°) + 252(A% + 7%) —128(1 + 1) — 24(A*c® + A°¢*) +16(A 7
+A%r*) —49(A°% — A°r°) -128}

64(A7% + A%7) —172(A7% + A%1) —100(A°7% + A°1%) + 64(A° +7°) + 916(1% + 72) +
208(A + 1) — 2817 +3451%¢% + 271°%°

) =

| ((464(A7% + A7) ~128(A7° + A°7) +164(A%C° + A°r%) ~128(2° + 7°) + 592(A% + %)
~T04(A +7) 11247 — 672427 —399.4°7

B
® | —768-9644s —51425% +31°%s°

(16)

The values of A and 7 is taken at
various points in the interval
A2€(0,1) and 7 € (1,2) to obtain a
particular discrete hybrid method. For

the purpose of testing the properties
of (13) and (14), the values are taken

as /1:i and r:ztogive;
4 4

2

1 h
=——(2048 — 2422 + 2048 -837y )+—(7f ,—154f . +7f),
yn+2 837 ( yn+7 yn+1 yn+% yn) 372 ( n+2 n+l n)

4

4 —
yn+2 -

1494045h

n+—
4

L (9565184y . —19350499y, , +16421888y —6636573yn]

(17)

(18)

h
189720

+

(31041f,, —363478f , +15417f,),

- (314(125 +A5%) = 32(A5° + A%5) — 4(A%S° + A%52) + 66(1° +5°) — 428(A2 + %) + 976(A + s)j
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respectively.

The order and error constants of the
method (17) and its derivative (18)
are respectively confirmed to be

p=6,c,,=-14818x10" and

p=>5,¢,,=-5.7190x10". The

method is consistent and zero stable,
satisfying the necessary and sufficient
conditions for convergence of linear
multistep methods.

Implementation of the method
We require additional closed starting

values, 5 =0, for the evaluation of

v =—~_|3328y _ —2082y  +3328y , 2187y, |+ |56 ,—7f  +56f
n, ey 729 e, n+

£ % Bima Journal of Science and Technology, Vol. 8(3B) Oct, 2024 ISSN: 2536-6041
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f ., 1=12,--- K since the method

and its derivative are open, S #0.

In this work, attempts are made to
derive the main closed predictors of
the same order of accuracy as starting
values. The following symmetric
explicit predictor method and its
derivative of the same order of
accuracy with the corrector method
are developed using the same
procedure in section 2;

2

2187 :
(19)
1
., =————| ~T374464y , +15674029y, , +10541440y , —18841005
e 5404077h( Yol Yo Yot y”}
(20)

+ P
2573370

The main predictor (19) and its
associated derivative (20) are each of
order p=6 and pP=>5 respectively

while their error constants C are

p+2

~1.4818x10° and 5.7190x10°°
respectively.

Taylor  series expansion  was
employed to generate other explicit
schemes for y ., Y/ . in Kayode

n+A
and Obarhua (2015).

n+—

h (1691096f L +3716789f,, +1400792f | —173502fn]
n+Z

Numerical Experiments

Some numerical examples are presented to
show the accuracy of the developed Hybrid
Block Method (HBM). In the examples
considered the absolute errors were obtained
as Err=|y,—y(x)| , where Vi is the
approximate solution obtained using the new
method BHM and Y(X;) is the exact solution
of the problem considered at the grid points.
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Problem 1: Dynamic Problem
A 10-kg mass is attached to a spring having a spring constant of 140N/m. the mass is started in
motion from the equilibrium position with an initial velocity of 1m/s in the upward direction and

with an applied external force F(t) =5sint . Find the subsequent motion of the mass if the force
due to air resistance is ~90XN |

Solution:
From the Newton’s second law
mX = —kx —ax + F(t) (21)
or
. a. Kk F(t
g+ 2x+ Xy FO (22)
m m m

When the system start with initial velocity V, and initial position X, at t=0, with initial
conditions

x(0)=x,, X(0)=v, (23)
If m=10, k=140, a=90 ang F(t) =5sint The equation of motion (21) yields

5('+9>’(+14x:%sint (24)

Applying the initial conditions X(0) =0 and X(0) = -1 to equation (24) and solve using maple
function to get

9 ., 99 9 13 .
Exact solution: X(I)=——€" +——€" ———cos(t) + ——sIn(t (25)
® 50 500 500 ® 500 ®

Table 1: Comparison Results of EAO2015 and ENM17.
t Ex—s Cp-s EAO02015 ENM17
0.1 -0.064362051546 -0.064362051521 1.274442e-08 2.51324E-11
0.2 -0.084307205226 -0.084307205211 3.044226e-08 2.64530E-11
0.3  -0.084052253134 -0.084052253180 4.150135e-08 4.60000E-11
0.4  -0.075293042133 -0.075293042098 4.538448e-08 4.40671E-11
0.5 -0.063570639604 -0.063570639412 4.429806e-08 1.92371E-10
0.6 -0.051421170694 -0.051421170420 4.046609e-08 2.74100E-10
0.7  -0.039930529564 -0.039930529132 3.547450e-08 4.32623E-10
0.8  -0.029498658628 -0.029498656717 3.028463e-08 1.91120E-09
0.9 -0.020212691313 -0.020212690146 2.540758e-08 1.16734E-09
1.0 -0.012026994254 -0.012026992356 2.107144e-08 1.89888E-09

Table 1 shows the comparison of the absolute errors in Areo and Omojola (2015) and errors in the
new hybrid predictor-corrector method for problem 1, for k=2, h=0.1. The new method has a better
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accuracy than Areo and Omojola (2015) of the same order of accuracy.

1078
s BENMI1T
s —e—EAO (2015)
53s =
2
1
Of === = = = =" ="

02 04 06 08 1

Figure 1: Error plot of Areo and Omojola (2015) and that of the new method, ENM17 for Problem
1.

Problem 2. Cooling of a body

The temperature Y degrees of a body, t minutes after being placed in a certain room, satisfies the
differential equation 3Y"+Y' =0 By using the substitutionZ=Y", or otherwise, find ¥ in terms
of t given that ¥ =60 when t=0 and Yy =35 when t=6In4_ Find after how many minutes the
rate of cooling of the body will have fallen below one degree per minute, giving your answer
correct to the nearest minute.

Problem formulation 2

y”:—%nym)=axy«»=—%?,h=01

Exact solution is

80 - 100
t)=—e 3 +—
y(t) 3 3
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Table 2: Comparison Results of EO02018, EO2019 and ENM17 for Problem 2.

t Ex—s Cp-s E002018 E02019 ENM17,
p=5k=2| p=6k=2 p=6,k=2

0.1 | 59.125762679520165000 | 59.125762679520165487 3.55e-11 2.344791e-13 | 4.87021e-16
0.2 | 58.280186267509812000 | 58.280186267509812120 4.58e-11 2.202682¢-13 | 1.20035e-16
0.3 | 57.462331147625591000 | 57.462331147625596700 7.00e-11 3.935749-12 | 5.70104e-15
0.4 | 56.671288507811937000 | 56.671288507811938412 6.50e-12 2.704951e-12 | 1.41252e-15
0.5 | 55.906179330416379000 | 55.906179330416374360 3.33e-11 7509112e-12 | 4.64026e-15
0.6 | 55.166153415412850000 | 55.166153415412858000 4.20e-11 1.569518e-12 | 8.01700e-15
0.7 | 54.450388435647511000 | 54.450388435647431560 4.38e-11 2.756872e-12 | 7.94415e-14
0.8 | 53.758089023057302000 | 53.758089023057356000 1.07e-10 4.375392¢-11 | 5.40034e-14
0.9 | 53.088485884845809000 | 53.088485884845636000 6.58e-11 6.474571e-11 | 1.73041e-13
1.0 | 52.440834948634382000 | 52.440834948633421000 6.69e-10 9.100178e-11 | 9.61140e-13

Table 2 shows the comparison of the absolute errors in Omole and Ogunware (2018), Obarhua
(2019) and errors in the new hybrid predictor-corrector method for problem 2, for k=2, h=0.1. The
new method has a better accuracy than Omole and Ogunware (2018) and Obarhua (2019) of the
same order of accuracy and block methods.

10710
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I
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-eo— ENMI17
= EO2019
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Figure 2: Error plot of Omole and Ogunware (2018), Obarhua (2019) and that of the new hybrid
method for Problem 2.
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Problem 3: (Two body Problem)

V=2, 4,0 -1 %O -0,

vi==2, y,0=0, y(0)=1

BN

Exact solution is Y, (t) = cost; v, (t) =sint
obtained with the method for Problem 3, the execution

The maximum errors

Yexact — ycomputed
time in microseconds t, and the total steps taken are compared with that of [9] two step two point
method.

Table 3: Shows the numerical solution of our method compared with the method of EKA2013 and
EOETAL2023.

EKA2013 EOETAL2023 ENM17
TOL
TS MAXE t, TS MAXE t,
107 33 9.763298E-08 635 1.35782080E-11 33  1.3452E-13 55
10 '55 4,170707E-10 1346 1.96524162E-10 55  2.2415E-16 58
10°° 74 2.100171E-12 2614 3.79459225E-10 74  4.3425E-17 62

107 130 3.214551E-15 2788 5.62369776E-10 130 3.3256E-17 120
10 278 2.473336E-17 5590 7.45242199E-10 278 5.4132E-18 140

Table 3 shows the comparison of the absolute errors in Kayode and Adeyeye (2013), Omole et al.
(2023) and errors in the new hybrid predictor-corrector method for problem 3. The new method
has a better accuracy and execution time than Kayode and Adeyeye (2013) and Omole et al. (2023).
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Figure 3: Error plot of Kayode and Adeyeye (2013), Omole et al. (2023) and that of the new

hybrid method for Problem 3.
Discussion of Results

Table 1 shows the outcome of the newly
developed method in comparison to Areo and
Omojola’s (2015) method of the same order
of accuracy. The outcome demonstrates that

the new
method outperformed Areo and Omojola's (
2015).

Problem 2 in Omole and Ogunware (2018)
and Obarhua (2019) was solved using the
new method (17). Despite having larger
stepnumbers, Table 2's results are more
accurate than those of Omole and Ogunware
(2018) and Obarhua (2019).

For the purpose of comparison with Kayode
and Adeyeye (2013)'s 3-step method and
higher order of accuracy and Omole et al.
(2023)'s of order nine, the new method was
similarly applied to solve Problem 3 in both
studies. The proposed method outperformed

Kayode and Adeyeye (2013) and Omole et al.

(2023) in terms of accuracy and efficiency,
according to the data displayed in Table 3.

Additionally, error plots were utilized to
assess the new method's smoothness,
consistency, and convergence in comparison
to the methods that were already in use and
were shown Figures 1-3. The new method's
smooth, consistent, and convergent nature
over the considered existing method is
demonstrated by the curves in Figures 1-3.

Conclusion

A new hybrid predictor-corrector method for
the direct solution of universal second order
initial value problems of ODEs has been
developed in this study. The method is
developed in such a way that the hybrid
points are at Y— function which enhanced

the reduction of function evaluation.TWO
real-world engineering problems that were
modeled as second order (I\VVPs) were solved
using the new method, and Tables 1 and 2
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demonstrate how much more accurate the
new method is than the previous ones. The
Tables 3 demonstrate that the novel method
outperforms the methods of Kayode and
Adeyeye (2013) and Omole et al. (2023) in
terms of efficiency and provides a better
approximation. The curves illustrated the

Abbreviations

TOL — Tolerance

TS — Total Steps taken

MAXE — Magnitude error of the computed
solution

t. — The execution time taken in
microseconds

EX — S — Exact solution
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