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ABSTRACT
This paper presents a review of operations on collections of multi-points of multisets involving
the addition, union, intersection, difference, symmetric difference, complement, arithmetic
multiplication, raising to arithmetic power and scalar multiplication. Furthermore, some algebraic
properties of these operations such as commutativity, idempotency, associativity, distributivity
and De Morgan’s laws are studied. The concept of a root set multi-point collection of a multipoint
collection is examined under union and intersection of such collections.
Keywords:Multiset, Multi-Point, Multi Real Point, De Morgan’s Law, Root Set

INTRODUCTION
Having objects with common attribute in
science and mathematics is a natural
phenomenon and mostly, researchers are
interested only in the number of such objects
(elements) sharing particular property
Syropoulos (2003). For instance molecules of
a particular compound, roots of polynomials,
sampling data, etc. The concept of multisets
(msets for short) is a generalization of a
classical set. In Cantor’s sets objects are not
allowed to repeat, if the repetition is allowed
then a mathematical structure known as msets
emerged. An msets is an unordered collection
of objects in which, objects are allowed to
repeat. The occurrence of individual object in
the mset is called its element; and each
indistinguishable element might be finite
number in the mset. The number of
occurrences of an individual element in a mset
is called the multiplicity of the element which
is finite in most of the applications and
contribute to the cardinality of the mset as
discussed by Blizard (1989) and Ibrahim et al.
(2011).
The notion of multi points (mpoints, for short)
and multi real points (mrpoints, for short) was
first introduced by Das and Roy (2021) where
the definition of mpoints, mrpoints and some

basic properties were presented. However, rich
as it is, this concept approach was limited to
the study of multi metric spaces and
applications. This work intends to review Das
and Roy (2021) and incorporate some notions.
We present some preliminaries and notations
on msets and collections of mpoints in section
two. In section three, we present some
operations on collections of mpoints such as
addition, union, intersection, difference,
complement, symmetric difference, arithmetic
multiplication, raising to arithmetic power,
and scalar multiplication and examine the
basic algebraic properties of these operations
such as commutativity, idempotency,
associativity, distributivity and absorption law.
We examine De Morgan’s laws as applied to
the complementation of union and
intersection of collections of mpoints as well
as the root set of collection of mpoint on union
and intersection.

PRELIMINARIES
msets
Definition 2.1.1(mset) Debnath and Debnath
(2019)
A collection of elements which are allowed to
repeat is called a mset. Formally if � is a set of
elements, an mset � drawn from the set � is
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represented by a function ��: � → ℕ, where ℕ
represents the set of non-negative integers.
For each � ∈ � , �� � is the characteristic
value of � in � and indicates the number of

occurrences of the element � in �. A mset � is
a set if

�� � ∈ 0,1 ∀� ∈ �.

The symbolic representation � ∈�� means � belongs to � exactly � times.

Here, we presents mset � drawn from the set � = {�1, �2, �3, …��} as

� = {�1, �2, �3, …��}�1,�2,�3,…,�� , or � = �1 �1 , �2 �2 , …, �� �� where �� are the
multiplicities of the elements ��, � = 1,2, …, �

Example 2.1.2

Let � = {�, �, �, �, �}. Then � = {�, �, �, �}2,4,5,1 = 2 � , 4 � , 5 � , 1 � is a mset drawn from
X.
Definition 2.1.3 (Cardinality of a mset) Debnath and Debnath (2019).

The cardinality of a mset � drawn from a set � denoted by card � is defined by

card � = �∈� ��� � . It is also denoted by |�|. A mset � over the set � is said to be finite if
|�| < ∞. We denote the class of all finite msets over � by � � .

Definition 2.1.4 (root set) Debnath and Debnath (2019)

Let � ∈ � � . Then the root set or support set of � denoted �∗ is given by the expression
�∗ = � ∈ � �� (�) > 0 . For instance, if � = �, �, �, �, �, �, �, �, � , then �∗ = �, �, � . For
every � such that �� (�) = 0 implies � ∉ �.

Note that � ∈ � ↔ �� � > 0 and � ∈ � ↔ � ∈ �∗

Definition 2.1.5 (empty mset) Petrovsky (2004)

Let � ∈ � � . Then � is said to be empty mset if �� � = 0 ∀� ∈ �. We denote the empty mset
by ∅ and �∅ � = 0 ∀� ∈ �

Definition 2.1.6 (equality of msets) Tella (2020)

Two msets �, � ∈ � � are equal denoted by � ≑ � if �� � = �� � ∀� ∈ �.
Definition 2.1.7 (submset) Tella (2020)

Let �, � ∈ � � . The mset � is a submultiset (submset for short) of � denoted by �⪽� or �⪾� if
�� � ≤ �� � ∀� ∈ �.

If �⪽� and � ≠ �, then � is called the proper submset of � denoted �⪽�

Definition 2.1.8 (mset operations) Tella (2020)
i. mset addition

Let �, � ∈ � � . The mset addition denoted by � ⊕ � is given by

��⊕� � = �� � + �� � , ∀� ∈ �.
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ii. set difference

Let �, � ∈ � � .The difference of � from � denoted by � ⊖ � is given by

��⊖� � = ��� �� � − �� � , 0 ∀� ∈ �.

iii. mset Union

Let �, � ∈ � � . Then the union of � and � denoted by � ⊎ � is defined by

��⊎� (�) = ��� �� � , �� � ∀� ∈ �.
iv. mset Intersection

Let �, � ∈ � � .Then the intersection of � and � denoted �⩀� is defined by

��⩀� � = ��� �� � , �� � ∀� ∈ �

v. Symmetric Difference

Let �, � ∈ � � .Then the symmetric difference of � and � denoted �∆�� is defined by
��∆�� � = |�� � − �� � |.

Note that �∆�� = � ⊖ � ⊎ � ⊖ �
vi. mset complement

Let � = �1, �2, �3, …, �� �� ∈ � � and � =⊎ ��. Then the complement for each � ∈ �
denoted by �� is defined by

��� � = �� � − �� � ∀� ∈ �

Note that for each � ∈ �, we have �⪽� and �⩀�� ≠ ∅ in general

vii. mset scalar multiplication

� ∈ � � and ∝∈ ℤ+. The scalar multiplication of an mset � denoted ∝ ⨀�

is defined by �∝⨀� =∝⋅ �� � , ∀� ∈ �, ∝∈ ℤ+

viii. mset arithmetic multiplication

Let �, � ∈ � � . Then the arithmetic multiplication of � and � denoted by � ⊙ � is
defined by ��⊙� � = �� � ⋅ �� � ∀� ∈ �

ix. raising to arithmetic power

Let � ∈ � � . Then the mset � raising to arithmetic power of � denoted by �� is defined
by ��� � = �� � �

∀� ∈ �, � ∈ ℤ+

Note that �0 = �⋇ (see Gambo and Tella (2022)),

� ⊎ � ∗ = �∗ ∪ �∗ and �⩀� ∗ = �∗ ∩ �∗ (Yager (1986))
x. mset direct product

Let �, � ∈ � � . Then the direct product of � and � denoted by �⨂� is defined by
��⨂� �, � = � �,� � � . �: �∈��, �∈�� .
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xi. mset raising to the direct power

Let � ∈ � � . Then the mset � raising to the direct power of � denoted by × � � is
defined by � ×� � �1, �2, �3, …, �� = �=1

� �� ��� , �� ∈ �.

MULTI POINTS
Definition 2.2.1 (Multi point) Das and Roy (2021)

Let � ∈ � � be a mset over a universal set � . Then a multi point (mpoint, for short) of � is
defined by a mapping ��

�: � → ℕ such that ��
� � = � where � is unique and � ≤ ��(�).

Note that � and � will be referred to as the base and the multiplicity of the mpoint ��
� respectively.

We denote the collection of all mpoints of a mset � ∈ � � by ��� and ��
� ∈ ��� if � > 0

otherwise ��
� ∉ ��� and that ��� is empty denoted ∅�� and ��

� ∈ ∅�� → � = 0 ∀� ∈ �

Definition 2.2.2 Das and Roy (2021)

The mset generated by a collection ��� of mpoints is denoted by ��(���) and is defined by
��� ���

(�) = ���{� : ��
� ∈ ���}

A mset can be generated from the collection of its mpoints. If ��� denotes the collection of all
mpoints of � ∈ � � , then obviously �� � = ���{� : ��

� ∈ ���} since �� � is finite and
hence � = ��(���).

Note that for all set �, �� � = 1∀� ∈ �. Thus ��� = ��
1 � ∈ � and for any � ∈ � � ,

��� is called finite collection of mpoints of the mset �. Also, �� ��� = �

We shall denote the class of all finite collections of mpoints over ��� by � ���

Note that � ∈ � � ↔ ��� ∈ � ��� .

Definition 2.2.3

Let ��� ∈ � ��� . The root set of ��� denoted ���
∗ is defined:

���
∗ = ��

1 ∈ ��� � ∈ �∗ ∧ ��
� ∈ ��� ∀� ∈ �.

Note that for any ��
� and ��

� we have ��
� = ��

� ↔ � = � ∧ � = �,

��
1 ∈ ���

∗ ↔ � ∈ �∗ ∧ ��
� ∈ ��� and ���

∗ ⊆ ���

Definition 2.2.4 Das and Roy (2021)

i. Let ���, ��� ∈ � ��� . The elementary union between ��� and ��� denoted by ��� ⊔ ���
is defined: ��� ⊔ ��� = {��

�: ��
� ∈ ���, ��

� ∈ ��� ��� � = max �, � }
ii. Let ���, ��� ∈ � ��� . The elementary intersection between ��� and ��� denoted by

��� ⊓ ��� is defined: ��� ⊓ ��� = {��
�: ��

� ∈ ���, ��
� ∈ ��� ��� � = min �, � }

iii. Let ���, ��� ∈ � ��� . ��� is said to be an elementary subset of ���, denoted by
��� ⊑ ��� ↔ ��

� ∈ ��� ⟹ ∃! � ≥ � ���ℎ �ℎ�� ��
� ∈ ���
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Definition 2.2.5

Let ���, ��� ∈ � ��� . Then ��� is said to be equal to ��� denoted ��� = ��� and defined as:
��� = ��� → ��

� ∈ ��� ↔ ��
� ∈ ��� ∀� ∈ �

Proposition 2.2.6

Let ���, ��� ∈ � ��� . Then ��� ⊑ ���⋀��� ⊑ ��� iff ��� = ���

Proof

If Let ���, ��� ∈ � ��� , such that ��� ⊑ ��� and ��� ⊑ ���

But ��� ⊑ ��� ↔ ��
� ∈ ��� ⟹ ∃�(� ≥ � ��� ��

� ∈ ���) (1)

also ��� ⊑ ��� ⟹ � ≥ � since ��
� ∈ ��� and ��

� ∈ ��� and � is unique (2)

Now from (1) and (2) above, we have � = � (3)

Thus from (1), (2) and (3) above, we have

��� ⊑ ���⋀��� ⊑ ��� → ��
� ∈ ��� ↔ ��

� ∈ ��� (4)

In particular, ��� = ��� (from definition 2.2.5)

Definition 2.2.7 (Addition of mpoint)

Let ���, ��� ∈ � ��� . The mpoint addition of ���, ��� denoted by ��� ⊕ ��� is define by

��� ⊕ ��� = {��
�|��

� ∈ ���, ��
� ∈ ��� ∧ � = � + � }

Definition 2.2.8 (Difference of mpoint)

Let ���, ��� ∈ � ��� . The mpoint difference of ���, ��� denoted by ��� ⊖ ��� is define by

��� ⊖ ��� = {��
�|��

� ∈ ���, ��
� ∈ ��� ∧ � = ��� � − �, 0 }

Note that if ��� ⊑ ��� then ��� ⊖ ��� = {��
�|��

� ∈ ���, ��
� ∈ ��� ∧ � = � − �}

Definition 2.2.9 (symmetric difference of mpoint)

Let ���, ��� ∈ � ��� . The mpoint symmetric difference of ���, ��� denoted by ���∆���� is
define by

���∆���� = ��
�|��

� ∈ ���, ��
� ∈ ��� ∧ � = � − �

Definition 2.2.10 (complement of mpoint)

Let �1��, �2��, …, ����: ���� ∈ � ��� , if ��� =⊔ ����. The mpoint complement of each ����
denoted by ����� ��� is defined by

����� ��� = ��� ⊖ ����

Note that ���� ⊑ ���
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Definition 2.2.11 (arithmetic multiplication of mpoint)

Let ���, ��� ∈ � ��� . The arithmetic multiplication of mpoints ���, ��� denoted by ��� ⊙ ��� is
define by

��� ⊙ ��� = {��
�|��

� ∈ ���, ��
� ∈ ��� ∧ � = �. �}

Definition 2.2.12 (raising to arithmetic power)

Let ��� ∈ � ��� . The mpoint ��� raising to arithmetic power � denoted by ���
� is define by:

���
� = ��

� ��
� ∈ ��� ∧ � = ��

Definition 2.2.13 (scalar multiplication)

Let ��� ∈ � ��� and ∝∈ ℤ+. The mpoint scalar multiplication of ��� denoted by ∝ ��� is define
by: ∝ ��� = ��

� ��
� ∈ ���, ∝ ∈ ℤ+ ∧ � =∝ . �

Definition 2.2.14 (cross product)

Let ���, ��� ∈ � ��� . The direct product of mpoints ���, ��� denoted by ���⨂��� is defined by
���⨂��� = � �,�

� : , � = �. � where ��
� ∈ ���, ��

� ∈ ���

Proposition 2.2.15. Let ���, ��� ∈ � ��� . Then

i. �� ��� ⊔ ��� = � ⊎ �
ii. �� ��� ⊓ ��� = �⩀�
iii. �� ��� ⊕ ��� = � ⊕ �
iv. �� ��� ⊖ ��� = � ⊝ �
v. �� ��� ⊙ ��� = � ⊙ �
vi. �� ���∆���� = �∆��

Proof:

(i). Now ��� ���⊔���
� = ��� �: ��

� ∈ ��� ⊔ ��� (by definition)

But ��� �: ��
� ∈ ��� ⊔ ��� = ��⊎�(�) (by definition)

Thus, ��� ���⊔���
� = ��⊎�(�)

In particular, �� ��� ⊔ ��� = � ⊎ �

(ii). ��� ���⊓���
� = ��� �: ��

� ∈ ��� ⊓ ��� (by definition)

But ��� �: ��
� ∈ ��� ⊓ ��� = ��⩀�(�) (by definition)

Thus, ��� ���⊓���
� = ��⩀�(�)

In particular, �� ��� ⊓ ��� = �⩀�

(iii-vi) follow similar proofs
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Proposition 2.2.16 .Let ���, ��� ∈ � ��� . Then

(i). �⪽� → ��� ⊆ ��� and

(ii). ��� ⊑ ��� → ���
∗ ⊆ ���

∗

Proof:

(i). Let �⪽� and ��
� ∈ ���.

Clearly, � ≤ ��(�) ≤ ��(�) (by definition and hypothesis)

and � ≤ ��(�). Thus, ��
� ∈ ���.In particular, ���⊆ ���.

(ii). let ��
1 ∈ ���

∗ and ��
� ∈ ���. We have � ∈ �∗ and ��(�) > 0 (By definition)

Clearly, ��
� ∈ ��� where � ≤ �(by definition and hypothesis)

Thus, ��
1 ∈ ���

∗ and ��� ⊑ ��� → ���
∗ ⊆ ���

∗ .

PROPERTIES OF ALGEBRAIC OPERATIONS ON � ���

With reference to the operations defined on the space � ��� , we examine the basic algebraic
properties of these operations such as commutativity, idempotency, associativity and distributivity
and De Morgan’s laws as applied to the complementation of union and intersection.
Proposition 3.1
Let ���, ��� ∈ � ��� . ��� ⊔ ��� ⊑ (� ⊎ �)��
Proof.
Let ��

� ∈ ��� ⊔ ��� and ��
� ∈ ���, ��

� ∈ ��� such that � = ��� �, � .
But � ≤ ��(�) and � ≤ ��(�) (by definition)
Thus, � = ��� �, � ≤ ��� �� � , �� � = ��⊎� �
and ��

� ∈ (� ⊎ �)��.
Thus, ��� ⊔ ��� ⊑ (� ⊎ �)��
However, the converse (� ⊎ �)�� ⊑ ��� ⊔ ��� is not always true. For example:
Let � = [�, �] and � = [�, �] be two msets, and their union � ⊎ � = �, �, � .
The respective mpoints of �, � and � ⊎ � are
��� = ��

1, ��
1 , ��� = [��

1] and (� ⊎ � )�� = ��
1, ��

2

Now, ��� ⊔ ��� = ��
1, ��

1 and (� ⊎ �)�� ⋢ ��� ⊔ ���

But ��� ⊔ ��� = ��
1, ��

1 ⊑ ��
1, ��

2 = (� ⊎ � )��
Proposition 3.2
Let ���, ��� ∈ � ��� . Then ��� ⊓ ���⊆ (�⩀�)��
Proof
Let ���, ��� ∈ � ��� .
Let ��

� ∈ ��� ⊓ ���, ��
� ∈ ��� and ��

� ∈ ��� such that � = ��� �, �
Clearly ��

� ∈ ��� implies � ≤ ��(�) and ��
� ∈ ��� implies � ≤ ��(�) (by definition)

Thus, � = ��� �, � ≤ ��� �� � , �� � = ��⩀� � (by definition)
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Thus, ��
� ∈ (�⩀�)�� and ��� ⊓ ���⊑ (�⩀�)��

Also here, the converse (�⩀�)�� ⊑ ��� ⊓ ��� is not always true. For example
Let � = [�, �, �, �, �] and � = [�, �, �, �, �] be two msets, and their intersection
�⩀� = �, �, �, � .
The respective mpoints of �, � and �⩀� are
��� = ��

2, ��
2 , ��� = [��

1, ��
1, ��

1] and (�⩀� )�� = ��
1, ��

2

Now, ��� ⊓ ��� = ��
1, ��

1

Hence (�⩀�)�� ⊑ ��� ⊓ ��� is not always true. i.e (�⩀�)�� ⋢ ��� ⊓ ���.
However, ��� ⊓ ��� = ��

1, ��
1 ⊑ ��

1, ��
2 = (�⩀�)��

Proposition 3.3. Let ���, ��� ∈ � ��� . Then
��� ⊙ ��� ⊑ (� ⊙ �)��
Proof
Let ���, ��� ∈ � ��� .
Let ��

� ∈ ��� ⊙ ��� and ��
� ∈ ���, ��

� ∈ ��� such that � = �� (by definition)
But � ≤ ��(�) and � ≤ ��(�) (by definition)
Thus, � = �� ≤ �� � . �� � = ��⊙� �
In particular, ��

� ∈ (� ⊙ �)�� and ��� ⊙ ��� ⊑ (� ⊙ �)��
However, (� ⊙ �)�� ⊑ ��� ⊙ ��� is not always true. For example
Let � = [�, �, �, �, �] and � = [�, �, �, �, �] be two msets, and their arithmetic multiplication
� ⊙ � = �, �, �, �, �, �, �, �, �, � .
The respective mpoints of �, � and � ⊙ � are
��� = [��

1, ��
2], ��� = ��

2, , ��
1, ��

1 and (� ⊙ � )�� = [��
3, ��

4]
Now, ��� ⊙ ��� = [��

2, ��
2]

Hence (� ⊙ �)�� = ��
3, ��

4 ⋢ ��
2, ��

2 = ��� ⊙ ���

However ��� ⊙ ��� = ��
2, ��

2 ⊑ ��
3, ��

4 = (� ⊙ �)��
Proposition 3.4 (De Morgan’s law of mpoints)
For any ���, ��� ∈ � ��� . Then
i. ��� ⊓ ���

� = ���
�⨆���

�

ii. ���⨆���
� = ���

� ⊓ ���
�

Proof

i. Let ��
� ∈ ��� ⊓ ���

�
and ��

� ∈ ���, ��
� ∈ ���, ��

� ∈ ��� such that � = � − ��� �, �
But � = � − ��� �, � = ��� � − �, � − � .
Thus, ��� ⊓ ���

�
= ��� − ��� ⊔ ��� − ���

In particular, ��� ⊓ ���
�

= ���
� ⊔ ���

�

ii. Let ��
� ∈ ��� ⊔ ���

�
and ��

� ∈ ���, ��
� ∈ ���, ��

� ∈ ��� such that � = � − ��� �, �
But � = � − ��� �, � = ��� � − �, � − � .
���⨆���

� = ��� − ��� ⊓ ��� − ��� .
In particular, ��� ⊔ ���

� = ���
� ⊓ ���

�



DOI: 10.56892/bima.v8i3A.811

Bima Journal of Science and Technology, Vol. 8(3) Sept, 2024 ISSN: 2536-6041

278

Proposition 3.5

For any ���, ���, ��� ∈ � ��� . Then
i. ��� ⊔ (��� ⊔ ���) = (��� ⊔ ���) ⊔ ���
ii. ��� ⊓ (��� ⊓ ���) = (��� ⊓ ���) ⊓ ���
iii. ��� ⊔ (��� ⊓ ���) = (��� ⊔ ���) ⊓ (��� ⊔ ���)
iv. ��� ⊓ (��� ⊔ ���) = (��� ⊓ ���) ⊔ (��� ⊓ ���)
Proof
i. Let ��

� ∈ ��� ⊔ ��� ⊔ ��� , ��
� ∈ ���, ��

� ∈ ���, ��
� ∈ ��� such that

� = ��� �, ��� �, � (by definition)
But � = ��� �, ��� �, � = ��� ��� �, � , � ∀�

Thus, ��� ⊔ (��� ⊔ ���) = (��� ⊔ ���) ⊔ ��� (by definition)

ii. Let ��
� ∈ ��� ⊓ ��� ⊓ ��� , ��

� ∈ ���, ��
� ∈ ���, ��

� ∈ ��� such that
� = ��� �, ��� �, � (by definition)
But � = ��� �, ��� �, � = ��� ��� �, � , � ∀�

In particular, ��� ⊓ (��� ⊓ ���) = (��� ⊓ ���) ⊓ ��� (by definition)

iii. Let ��
� ∈ ��� ⊔ ��� ⊓ ��� , ��

� ∈ ���, ��
� ∈ ���, ��

� ∈ ��� such that
� = ��� �, ��� �, � (by definition)
But � = ��� �, ��� �, � = ��� ��� �, � , ��� �, � ∀�

Thus, ��� ⊔ (��� ⊓ ���) = (��� ⊔ ���) ⊓ (��� ⊔ ���) (by definition)

iv. Let ��
� ∈ ��� ⊓ ��� ⊔ ��� , ��

� ∈ ���, ��
� ∈ ���, ��

� ∈ ��� such that
� = ��� �, ��� �, � (by definition)
But � = ��� �, ��� �, � = ��� ��� �, � , ��� �, � ∀�

Thus, ��� ⊓ (��� ⊔ ���) = (��� ⊓ ���) ⊔ (��� ⊓ ���) (by definition)

Proposition 3.7 (Absorption laws of mpoint)

For any ���, ��� ∈ � ��� . Then
i. ��� ⊔ ��� ⊓ ��� = ���

ii. ��� ⊓ ��� ⊔ ��� = ���

Proof

i. Let ��
� ∈ ��� ⊔ ��� ⊓ ��� , ��

� ∈ ���, ��
� ∈ ���,

such that � = ��� �, ��� �, � (by definition) (1)

if ��� �, � = �, then ��� �, � = � (from (1)) (2)

if ��� �, � = �, then ��� �, ��� �, � = ��� �, � = � (3)

Thus, � = � ∀�(from 1-3)
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In particular, ��� ⊔ ��� ⊓ ��� = ���(by definition)
ii. Let ��

� ∈ ��� ⊓ ��� ⊔ ��� , ��
� ∈ ���, ��

� ∈ ���,

such that � = ��� �, ��� �, � (by definition) (1)

if ��� �, � = �, then ��� �, � = � (from (1)) (2)

if ��� �, � = �, then ��� �, ��� �, � = ��� �, � = � (3)

Thus, � = � ∀�(from 1-3)

In particular, ��� ⊓ ��� ⊔ ��� = ��� (by definition)

Proposition 3.8 (Idempotent laws of mpoint)

For any ���, ��� ∈ � ��� . Then
i. ��� ⊔ ��� = ���
ii. ��� ⊓ ��� = ���

Proof

i. Let ��
� ∈ ��� ⊔ ���, ��

� ∈ ��� such that � = ��� l, l = l  (by definition)
Thus, ��

� = ��
� (since � = � ∀�)

Hence, ��� ⊔ ��� = ���

ii. Let ��
� ∈ ��� ⊓ ���, ��

� ∈ ��� such that � = ��� l, l = l  (by definition)
Thus, ��

� = ��
� ( since � = � ∀�)

Hence, ��� ⊓ ��� = ���

Proposition 3.9

For any ���, ��� ∈ � ��� . Then
i. ��� ⊓ ���

∗
= ���

∗ ∩ ���
∗

ii. ��� ⊔ ���
∗ = ���

∗ ∪ ���
∗

iii. ��� ⊓ ���
� = ���

� ⊓ ���
�

iv. ��� ⊔ ���
�

= ���
� ⊔ ���

� where � ≥ 0

Proof

i. Let ��
� ∈ ��� ⊓ ���

∗
and ��� = ��� ⊓ ���

� = �� ��� = �� ��� ⊓ ��� = �⩀� (Proposition 2,2,15)
Since ��

� ∈ ��� ⊓ ���
∗
, then � ∈ �∗(by definition)

But �∗ = �⩀� ⋆ = �∗ ∩ �∗ (Yager (1986))
Thus � ∈ �∗ ∩ �∗. i.e � ∈ �∗ ∧ � ∈ �∗

In particular, ��
� ∈ ���

∗ and ��
� ∈ ���

∗ . i.e ��
� ∈ ���

∗ ∩ ���
∗

Hence, ��� ⊓ ���
∗

⊆ ���
∗ ∩ ���

∗ (1)
Now let ��

� ∈ ���
∗ ∩ ���

∗ . We have ��
� ∈ ���

∗ and ��
� ∈ ���

∗

But ��
� ∈ ���

∗ → ��
� ∈ ��� and ��

� ∈ ���
∗ → ��

� ∈ ���
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Let � = ��� �, � . Then ��
� ∈ ��� ⊓ ���.

In particular, ��
� ∈ ��� ⊓ ���

∗
and ���

∗ ∩ ���
∗ ⊆ ��� ⊓ ���

∗
(2)

Comparing (1) and (2) above, the result follows
ii. Let ��

� ∈ ��� ⊔ ���
∗
(by definition)

Let ��� = ��� ⊔ ���

We have � = �� ��� = �� ��� ⊔ ��� = � ⊎ �
Since ��

� ∈ ��� ⊔ ���
∗
, then � ∈ �∗(by definition)

Where �∗ = � ⊎ � ⋆ = �∗ ∪ �∗ (Yager (1986))
Thus, � ∈ �∗ ∪ �∗. i.e � ∈ �∗ ∨ � ∈ �∗

In particular, ��
� ∈ ���

∗ or ��
� ∈ ���

∗ . i.e ��
� ∈ ���

∗ ∪ ���
∗

Hence, ��� ⊔ ���
∗ ⊆ ���

∗ ∪ ���
∗ (3)

Now let ��
� ∈ ���

∗ ∪ ���
∗ . We have ��

� ∈ ���
∗ or ��

� ∈ ���
∗

But ��
� ∈ ���

∗ → ��
� ∈ ��� and ��

� ∈ ���
∗ → ��

� ∈ ���
Let � = ��� �, � . Then ��

� ∈ ��� ⊔ ���.
In particular, ��

� ∈ ��� ⊔ ���
∗
and ���

∗ ∪ ���
∗ ⊆ ��� ⊔ ���

∗
(4)

Comparing (3) and (4) above, the result follows
iii. Let ��

� ∈ ��� ⊓ ���
�
, ��

� ∈ ��� ⊓ ���, ��
� ∈ ���, ��

� ∈ ���
such that � = �� and � = ��� �, � (by definition)
In particular, � = (��� �, � )�

But (��� �, � )� = ��� ��, ��

Thus, � = (��� �, � )� = ��� ��, �� ∀�
In particular, ��� ⊓ ���

�
= ���

� ⊓ ���
�

iv. Let ��
� ∈ ��� ⊔ ���

�
, ��

� ∈ ��� ⊔ ���, ��
� ∈ ���, ��

� ∈ ���
such that � = �� and � = ��� �, � (by definition)
In particular, � = (��� �, � )�

But (��� �, � )� = ��� ��, ��

Thus, � = (��� �, � )� = ��� ��, �� ∀�
In particular, ��� ⊔ ���

�
= ���

� ⊔ ���
�

Proposition 3.10

For any ���, ���, ��� ∈ � ��� . The operation ⊙ is distributive over the operation ⨁ i.e
��� ⊙ (���⨁���) = (��� ⊙ ���)⨁(��� ⊙ ���)

Proof

��
� ∈ ��� ⊙ ���⨁��� , ��

� ∈ ���, ��
� ∈ ���, ��

� ∈ ���, such that � = �. � + � (by definition)

But � = �. � + � = �. � + �. � (distributivity of multiplication over addition)

Hence, ��� ⊙ ���⨁��� = (��� ⊙ ���)⨁(��� ⊙ ���)

Proposition 3.11.
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Let ���, ��� ∈ � ��� . Then ���∆���� = ��� ⊖ ��� ⊔ ��� ⊖ ���

Proof
Let ��

� ∈ ���∆����, ��
� ∈ ��� ,, ��

� ∈ ���

Clearly, � = � − � = � − � if � − � > 0
� − � if � − � < 0 (by definition) (1)

Thus, � = � − � = ��� � − �, � − � (from (1)) (2)
In particular, ���∆���� = ��� ⊖ ��� ⊔ ��� ⊖ ��� (by definition and (2))

Proposition 3.12

Let ��� ∈ � ��� . Then ���
0 = ���

∗

Proof

Let ��
� ∈ ���

0 and ��
� ∈ ���

We have � = �0 = 1(Definition 2.2.12)

in particular ���
0 = ���

∗ .

CONCLUSION
This paper explores the fundamental
operations on collections of finite mpoints, as
introduced by Das and Roy (2021). We
investigate the basic algebraic properties of
these operations, including the application of
De Morgan’s laws to the complementation of
union and intersection of mpoint collections.
Furthermore, we presents the root set of
mpoint collections under union and
intersection operations. Our study provides a
comprehensive understanding of the algebraic
behavior of mpoints, contributing to the
development of this emerging field.
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