DOI: 10.56892/bima.v8i3.764

Analyzing Covid-19 Infection Patterns in Nigeria's Geopolitical Zones: A Comparative
Study Using Count Distribution Models

Abdulkadir Muhammed Bello'*, Sani Salisu®*, Jibrin Sagiru? and Abdulkadir Abdulkadir!

Department of Mathematical Sciences, Faculty of Science, Gombe State University, Nigeria
Department of Mathematics, Modibbo Adama University Yola, Nigeria

Corresponding Author: ambello@gsu.edu.ng, saalisusaani@gmail.com
ABSTRACT

Count data regression is a commonly employed technique in various fields, particularly within the
health sector, where precise model selection depends on the characteristics of the response
variable. While continuous response variables are typical in regression analyses, significant
attention has been devoted to modeling discrete variables. Notably, existing literature has
underscored the potential spatial variance in COVID-19 incidence counts within Nigeria.
Numerous scholars have explored alternative estimation methods for COVID-19 cases, motivating
this study to investigate frequency disparities among different regions in Nigeria. The primary aim
of this study is to compare the prevalence of COVID-19 infection cases and identify the optimal
model for characterizing infection case prevalence across geographical zones in Nigeria. To
achieve this, five statistical models were assessed: Poisson, Negative Binomial, Generalized
Poisson, Zero-Inflated Poisson, and Zero-Inflated Negative Binomial (ZINB) distributions. Model
selection criteria, including AIC, P-values, and Chi-square values, were employed for each
infection case in every zone. Both ZINB and Negative Binomial models consistently address over-
dispersion. However, ZINB, by accounting for excessive zeros, emerges as the optimal choice,
providing accurate insights into pandemic dynamics across diverse regions in Nigeria. These
findings offer actionable guidance for combating COVID-19, with ZINB models consistently
demonstrating effectiveness in representing infection data across Nigeria's various regions,
effectively managing over-dispersion and excess zeros.
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INTRODUCTION crucial for informing targeted public health
interventions. Several studies have
investigated COVID-19 transmission
dynamics in Nigeria. Adeniyi et al. (2020)
employed a susceptible-exposed-infected-
recovered (SEIR) model to assess the early
stages of the outbreak, while Thekweazu et al.
(2020) explored the role of travel restrictions
in curbing the spread. However, a gap exists in
our understanding of how COVID-19 infection
patterns differ across Nigeria's geopolitical
zones.

The rapid and alarming surge in COVID-19
cases, the challenges in controlling its spread,
and the evolving nature of the outbreak across
global cities have transformed it from an
epidemic into a pandemic, affecting every
corner of the world. The emergence of the
novel coronavirus disease 2019 (COVID-19)
in late 2019 presented an unprecedented global
health crisis. Nigeria, Africa's most populous
nation, confirmed its first case in February
2020. Since then, the virus has spread
throughout the country, with varying infection =~ This comparative analysis will provide
patterns observed across its six geopolitical  valuable insights into the factors driving
zones. Understanding these variations is  geographical  disparities in COVID-19
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transmission within Nigeria. The findings can
inform the development of regionally tailored
public health strategies to mitigate the spread

of the virus and protect vulnerable populations.

The COVID-19 pandemic has emerged as one
of the most significant global health crises of
the 21st century, challenging nations
worldwide to implement effective strategies
for containment and mitigation. In Nigeria, the
impact of the pandemic has been particularly
pronounced, with the country experiencing
multiple waves of infection and varying
degrees of transmission across its diverse
geopolitical zones (NCDC, 2020). As
policymakers and public health officials
grapple with the complexities of managing the
pandemic, understanding the epidemiological
dynamics of COVID-19 at the subnational
level is essential for implementing targeted
interventions and resource allocation strategies
tailored to the unique -characteristics of
different regions.

While previous studies have provided valuable
insights into national-level trends and risk
factors associated with COVID-19
transmission in Nigeria (Oladipo et al., 2021,
Olawale et al., 2020), there remains a notable
gap in the literature regarding regional
disparities and their implications for public
health interventions. Nigeria's geopolitical
landscape, comprising six distinct zones with
varying population densities, socio-economic
indicators, and healthcare infrastructure,
presents a complex mosaic of factors that may
influence the spread and severity of COVID-
19 within each region (Oduwole et al., 2018).
This study aims to address this gap by
employing count distribution models to
analyze COVID-19 case data for each of
Nigeria's six geopolitical zones. Count
distribution models, such as the Poisson or
Negative Binomial models, are well-suited for
analyzing discrete count data like daily
COVID-19 cases (Sani, et al, 2023).
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By comparing the model fits across zones, we
can identify statistically significant differences
in infection patterns. By leveraging data
collected from reputable sources such as the
Nigeria Centre for Disease Control (NCDC)
and other relevant databases, we aim to assess
the performance of five count distribution
models:  Poisson,  Negative  Binomial,
Generalized Poisson, Zero-Inflated Poisson,
and Zero-Inflated Negative Binomial (ZINB)
distributions. These models offer distinct
advantages in capturing the heterogeneity and
complexity of COVID-19 transmission
patterns, including over-dispersion and excess
zeros commonly observed in infectious disease
data (Hilbe, 2014; Cameron & Trivedi, 2013).

Through a rigorous statistical framework and
comparative analysis of infection counts, we
seek to identify regions with
disproportionately high infection rates or
unique transmission dynamics, thereby
providing actionable insights for policymakers
and public health officials involved in
pandemic response efforts. By tailoring
interventions to the specific needs and
challenges of each geopolitical zone, we aim
to mitigate the spread of COVID-19 and
minimize its impact on vulnerable populations,
ultimately contributing to the broader global
effort to control the pandemic.

Yildirim, Kaciranlar & Yildirim (2022) states
that the choice of an appropriate regression
model is crucial in analyzing the dynamics of
the pandemic. While continuous response
variables are typically used in regression
models, there has been a significant focus on
developing models for discrete variables.
Count data regression models have emerged as
effective tools when the response variable
represents the count of occurrences and is non-
negative. These models have found extensive
application across various fields, with
particular interest in the healthcare sector.



Poisson and Negative Binomial regression
models have gained significant attention in a
wide range of disciplines, including medicine,
biostatistics, biology, finance, demography,
astronomy, business management, earth
sciences, communication, and insurance.
However, clinical studies often face the issue
of 'over-dispersion,’ where the variance of case
counts exceeds the mean. The Poisson
distribution assumes that the variance equals
the mean, which can be too restrictive for
clinical data that tend to exhibit greater
variation than the mean suggests (Dobson &
Barnett, 2008).

Literature Review

The COVID-19 pandemic has prompted a
surge of research aimed at understanding its
transmission dynamics, risk factors, and the
effectiveness of interventions across various
contexts. In the context of Nigeria, studies
exploring COVID-19 infection patterns have
contributed valuable insights into the
epidemiological landscape of the virus within
the country's geopolitical zones. This literature
review synthesizes recent research focusing on

COVID-19 infection patterns in Nigeria,
highlighting key findings and gaps in
knowledge.

Oladipo et al. (2021) conducted a

comprehensive epidemiological analysis of
COVID-19 cases in Nigeria, exploring
spatiotemporal trends and identifying factors
associated with increased transmission rates.
Their study revealed significant regional
disparities in infection rates, with certain
geopolitical zones experiencing higher case
burdens than others. Factors such as
population density, socio-economic status, and
healthcare infrastructure were identified as
influential ~ determinants of COVID-19
transmission dynamics within Nigeria.

In a similar vein, Olawale et al. (2020)
examined the socilo-economic and
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demographic determinants of COVID-19
infection in Nigeria using data from the
Nigeria National Household Survey. Their
findings underscored the disproportionate
impact of the pandemic on vulnerable
populations, particularly those residing in
densely populated urban areas with limited
access to healthcare services. Socio-economic
factors such as poverty, overcrowding, and
lack of access to clean water and sanitation
facilities were identified as significant risk
factors for COVID-19 transmission.

While these studies provide valuable insights
into the broader epidemiological trends of
COVID-19 in Nigeria, there remains a notable
gap in the literature regarding regional
disparities and the effectiveness of targeted
interventions  within specific geopolitical
zones. This gap is particularly pronounced
given Nigeria's diverse geopolitical landscape,
characterized by varying population densities,
socio-economic indicators, and healthcare
infrastructure across its six geopolitical zones.

To address this gap, the current study employs
advanced count distribution models to analyze
COVID-19 infection patterns within Nigeria's
geopolitical zones. By comparing the
performance of different statistical models,
including Poisson, Negative Binomial, and
Zero-Inflated Negative Binomial distributions,
we aim to identify the optimal approach for
characterizing infection prevalence and
transmission dynamics within each zone. This
comparative analysis will provide actionable
insights for policymakers and public health
officials, enabling the development of targeted
interventions tailored to the specific needs and
challenges of each region.

In summary, while existing research has shed
light on the broader epidemiological trends of
COVID-19 in Nigeria, there is a pressing need
for studies that delve into regional disparities
and their implications for public health
interventions. By conducting a comparative
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analysis of infection patterns across Nigeria's
geopolitical zones, this study seeks to fill this
gap in the literature and inform evidence-
based decision-making in the ongoing fight
against the COVID-19 pandemic.

COVID-19 and its Impact on Nigeria

The emergence of COVID-19 in late 2019 has
had a devastating impact on global health,
with Nigeria being no exception. As the most
populous country in Africa, Nigeria confirmed
its first COVID-19 case in February 2020. The
virus has since spread nationwide, posing
significant challenges to the country's
healthcare system (Salako et al., 2020).

Several studies have explored different aspects
of the COVID-19 pandemic in Nigeria.
Adeniyi et al. (2020) utilized a mathematical
modeling approach, specifically a SEIR model,
to analyze the initial stages of the outbreak and
predict its trajectory. Their study provided
valuable insights into the early transmission
dynamics of COVID-19 in Nigeria. Similarly,
Ihekweazu et al. (2020) investigated the
effectiveness of travel restrictions
implemented by the Nigerian government in
curbing the spread of the virus. Their findings
highlighted the importance of non-
pharmaceutical interventions in mitigating the
initial spread of COVID-19.

Heterogeneity in COVID-19 Transmission
Across Nigeria

While the aforementioned studies provide
valuable insights into the national picture of
COVID-19 in Nigeria, it is crucial to
acknowledge the potential for geographical
variations in transmission patterns. Nigeria is a
vast country with diverse demographics,
socioeconomic conditions, and healthcare
infrastructure across its six geopolitical zones
(North-central, Northeast, Northwest,
Southeast, South-south, and Southwest). These
factors can significantly influence the spread
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of infectious diseases, including COVID-19
(Adebayo & Oyerinde, 2020).

A study by Ogunbodede et al. (2021) explored
these disparities using spatial analysis
techniques.  Their findings suggest a
significant spatial heterogeneity in COVID-19
cases across Nigeria, with the Northwest zone
exhibiting the highest burden. This highlights
the need for more granular analyses that
consider geographical variations in
transmission patterns.

Application of Count Distribution Models in
Infectious Disease Epidemiology

Count distribution models are statistical tools
widely employed in analyzing infectious
disease data, particularly when dealing with
discrete count outcomes like daily COVID-19
cases (Farrington, 1996). These models allow
researchers to characterize the underlying
distribution of case counts and identify factors
associated with variations in these counts.
Commonly used count distribution models in
infectious disease epidemiology include the
Poisson and Negative Binomial models (Lloyd,
2007).

Previous research has demonstrated the
effectiveness of count distribution models in
analyzing COVID-19 case data. A study by
Ali et al. (2020) employed a Negative
Binomial model to analyze daily COVID-19
cases in Pakistan and identify factors
associated with increased transmission risk.
Similarly, a study by Meyer et al. (2020)
utilized a zero-inflated Poisson model to
analyze COVID-19 cases in Germany,
accounting for days with zero reported cases.

Gaps in Knowledge and the Current Study

While existing research has shed light on
various aspects of the COVID-19 pandemic in
Nigeria, a gap remains in our understanding of
how infection patterns differ across the
country's geopolitical zones. This study aims



to address this gap by employing count
distribution models to analyze and compare
COVID-19 case data for each of Nigeria's six
geopolitical zones. By identifying statistically
significant differences in the model fits across
zones, this study can provide valuable insights
into the factors driving geographical
disparities in COVID-19 transmission within
Nigeria.

In summary, this study aims to contribute to
the growing body of literature on COVID-19
epidemiology by examining subnational
variability in infection patterns within Nigeria.
By employing advanced statistical techniques
and regional-level data analysis, we seek to
inform evidence-based decision-making and
support the development of targeted
interventions to combat the ongoing pandemic
in Nigeria and beyond.

MATERIALS AND METHODS

Scope of the Study
This study encompasses all six geopolitical
zones in Nigeria, each serving as an

administrative division comprising a specific
number of states. These zones, officially
designated as North-Central, North-East,
North-West, South-East, South-South, and
South-West, were included to capture the
geographic and administrative diversity of the
country.

Method of Data Collection

The data utilized in this study consisted of
COVID-19 infection records recorded between
February 2020 and February 2022 within
Nigeria's six geopolitical zones. These records
were obtained from the database of the
National Center for Disease Control (NCDC),
which serves as the authoritative source for
tracking and reporting infectious disease cases
in the country. The NCDC database provides
detailed daily counts of COVID-19 infections
reported by healthcare facilities and
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laboratories across all states within each
geopolitical zone. This readily accessible
database offers disaggregated daily case
counts for each state within their respective
geopolitical zone.

Data Analysis

The data analysis process employed a multi-
pronged approach to comprehensively
understand the spatial distribution of COVID-
19 infection patterns across Nigeria's
geopolitical zones.

To analyze the data, a series of statistical
methods were employed. Initially, a
descriptive statistics analysis was conducted to
characterize the active cases variable.
Subsequently, various count models, including
Poisson, Negative Binomial, Zero-Inflated
Poisson, Zero-Inflated Negative Binomial, and
Generalized Poisson, were fitted to the
infection data. For this research, the R-
Package was employed for model fitting and
selection, facilitating a comprehensive analysis
of the dataset.

Descriptive Statistics

The initial phase involved conducting a
descriptive statistics analysis. This analysis
aimed to characterize the central tendency
(average level) and variability (spread) of
daily COVID-19 cases within each of the six
geopolitical  zones. Common  summary
measures employed for this purpose included
the mean (average number of daily cases),
median (middle value when cases are ordered
from lowest to highest), and standard deviation
(measure of how spread out the data is from
the mean). Analyzing these measures provided
valuable insights into the overall burden and
variation of COVID-19 cases across the
different zones.

Count Distribution Modeling

The core component of the analysis involved
fitting various count distribution models to the



daily COVID-19 case data for each zone. This
comparative approach aimed to identify the
model that best represents the underlying

distribution of infection rates within each zone.

The R statistical software package (version
number) was chosen for model fitting and
selection due to its extensive functionalities
for statistical analysis.
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value (0,1,2...) with Probability Mass
Function (P.M.F.)

( = ):—|, =
01,...

The mean and variance of the distribution are
equal, i.e.
E(Y)=Var(Y)=

Negative Binomial

The Negative Binomial distribution is used to
model over-dispersed count data and accounts
for variability in the data through an additional
parameter, o.

The Negative Binomial model can be obtained
from the mixture of Poison and Gamma
distributions. It is widely used in modeling
over-dispersed count data. It is probability
distribution is given by

(=)= (!?))(+ )(+ ) =01,.., >1

=shape parameter

Poison

The Poisson distribution describes the
probability of a given number of events
occurring in a fixed interval of time or space.
It is characterized by a single parameter,
representing the average rate of occurrence.

Let Y be a random variable having a Poison
distribution with parameter . It takes integer

= ()

Generalized Poison (GP) Distribution
The GP distribution is a flexible count model that allows for both under-dispersion and over-
dispersion by incorporating a shape parameter, 0.

(+ )7~

(.= !

y=0,1,2,...

>0,0=s =1
Where,

= (), which is the average rate;
=Shape parameter,

Zero-Inflated Poison (ZIP)
This model account for excess zeros in the data, which may arise due to both genuine absence of
events and excess zeros.
This was developed by Lambert (1992), given the responses
Y =(Y1,.....,Yn) which are independent, the assumption of the model is that with probability P the
only possible is 0, and with probability (1- p), a Poison ( ) random variable is observed in Y. The
P.m.fofY is given by

-1

0,withprobabilityp, +(1- p,)e "

Yi = e*li/llyi
k,withprobability (1- p,) ’

k=1,2,...

The mean and the variance are
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()=(@@- ) and (H)=QQ- )( + 2) = ((l - ) )2 respectively.
Zero-Inflated Negative Binomial
These models account for excess zeros in the data, which may arise due to both genuine absence
of events and excess zeros.
p+(1—p,.)(l+/1—j ‘ ,y=0
I'(y+a

(1-p) T (@) (1+i—]70{ (1+i—jiy,y:1,2,...

In order to estimate o and B as in the Poison model, the iteration procedure or method of Newton
Raphson is applied.

—

Model Selection and Rationale useful if the daily case data exhibits a non-

Five candidate count distribution models were standard distribution pattern.

considered for this analysis: Model Selection Criteria

Poisson Regression: This commonly used  The Akaike Information Criterion (AIC)
model assumes a constant rate of new COVID- served as the primary metric for model
19 cases over time. However, it might not be  selection. AIC is a statistical measure that
suitable for data with over-dispersion, where  balances model fit with model complexity.
the variance is greater than the mean. The model with the lowest AIC value for each
zone was considered the best fit for the daily
COVID-19 case data within that zone.
Choosing the model with the lowest AIC
ensures a balance between accurately
representing the data and avoiding overly
complex models.

Negative Binomial Regression: This model
addresses the limitation of the Poisson model
by allowing for over-dispersion. It is often
preferred for count data with a higher degree
of variability than expected under a Poisson
distribution.

Zero-Inflated Poisson (ZIP) Regression: Justification for Model Selection

This model specifically caters to scenarios  The selection of these specific count
where there is an excess of zeros in the data. distribution models was guided by the
This could be relevant for some zones that  potential characteristics of the daily COVID-
may have experienced periods with very low 19 case data. It is likely that the number of
or zero reported cases, particularly in the early = daily cases would exhibit over-dispersion due
stages of the pandemic. to factors like population density, healthcare

Zero-Inflated Negative Binomial (ZINB)  2ccess, and testing capacity varying across
Regression: This model combines the zones. Additionally, the possibility of

strengths of the ZIP and Negative Binomial encountering zones .With a signiﬁgant ngmber
models, accounting for both over-dispersion of #e10 €ases carly in the pandemic motivated
and an’ excess of zeros. It offers a more the inclusion of Zero-Inflated models (ZIP and

flexible approach when these characteristics ZINB). Finally, - the Gen@rahzed .POISSOH
. model offered a versatile option for
are present in the data.

accommodating  potentially = non-standard
Generalized Poisson (GP) Regression: This distribution patterns in the data.

model provides more flexibility in capturing
various shapes of count data distributions
compared to the other models. It might be
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Hypothesis Testing
Hypothesis

Null Hypothesis (Ho); The distribution fits the
infection data well.

Alternative Hypothesis (Ha); The distribution
does not fit the infection data well.

Level of Significance:
The level of significance (o) is set at 5%.
Decision Rule:

The null hypothesis (HO) will be rejected if the
p-value is less than o, indicating that the
chosen distribution does not fit the infection
data well. Conversely, if the p-value is greater
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than or equal to a, the null hypothesis will not
be rejected, signifying a good fit of the
distribution to the infection data.

RESULTS

On analysis of dataset on number of COVID-
19 infections across the six geopolitical zones.
Table 1 provides an overview of COVID-19
infection records categorized by varying
counts of cases within Nigeria's Geopolitical
Zones. Each row in the table represents a
distinct count of cases, spanning from 0 to 8§,
while each column corresponds to a specific
Geopolitical Zone. The figures within each
cell represent the count of COVID-19
infection records within that zone associated
with the specified count of cases.

Table 1: Number of COVID-19 infections records for each Geopolitical Zone in Nigeria

NUMBER NORTH- NORTH- NORTH- SOUTH- SOUTH- SOUTH-

OF EAST CENTRAL WEST WEST EAST SOUTH
}C{‘SCSI?E{DS Count (%) Count (%) Count (%) Count (%) Count (%) Count (%)
0 366 53.6 288 456 183 36.2 176 334 198 37.7 166 33.0
1 127 18.6 118 18.7 109 21.6 125 23.7 112 213 137 273
2 81 119 78 12.4 84 16.6 89 169 94 179 86 17.1
3 40 5.9 52 82 o6l 12.1 56 10.6 59 11.2 53 10.5
4 29 4.2 38 6.0 34 6.7 40 7.6 38 7.2 25 5.0
5 13 1.9 28 44 25 50 22 4.2 15 2.9 15 3.0
6 12 1.8 12 1.9 5 1.0 12 23 5 1.0 12 2.4
7 10 L.5 12 1.9 0.6 5 0.9 0.6 7 1.4
>7 5 0.7 5 0.8 1 02 2 0.4 1 0.2 2 0.4
TOTAL 683 631 505 527 525 503

In the North-East, the region accounts for a
total of 683 COVID-19 infection records.
These records are distributed as follows:
53.6% of the records have 0 cases, 18.6% have
1 case, 11.9% have 2 cases, and 5.9% have 3
cases. Moving to the North-Central zone, the
records are distributed as follows: 45.6% with
0 cases, 18.7% with 1 case, 12.4% with 2
cases, and 8.2% with 3 cases throughout the
study period. In the North-West zone, the
distribution is as follows: 36.2% of the records
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have 0 cases, 21.6% have 1 case, 16.6% have
2 cases, and 12.1% have 3 cases.

For the South-West zone, the distribution
stands at: 33.4% with O cases, 23.7% with 1
case, 16.9% with 2 cases, and 10.6% with 3
cases. In the South-East, the distribution is as
follows: 37.7% with 0 cases, 21.3% with 1
case, 17.9% with 2 cases, and 11.2% with 3
cases. Lastly, in the South-South zone, with a
total of 503 COVID-19 infection records, the
distribution is: 33.0% with 0 cases, 27.3%



with 1 case, 17.1% with 2 cases, and 10.5%
with 3 cases.

The data reveals that both the North-East and
North-Central zones have the highest number
of infection records across all counts of cases,
suggesting a higher frequency of COVID-19
infections in these regions. Furthermore, there
is a noticeable variation in the distribution of
infection records among different zones. The
South-West and South-South zones, in
particular, exhibit relatively lower counts of
infection records across all counts of cases
compared to the North-East, North-Central,
and North-West zones. It is worth noting that
the majority of infection records are
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concentrated around lower counts of cases
(ranging from 1 to 3), indicating that most
Geopolitical Zones experienced a higher
number of instances with relatively fewer
COVID-19 cases.

Table 2 presents key results for the dataset of
COVID-19 infections in North-East, Nigeria.
The observed mean of COVID-19 infections is
1.1303, and the observed variance is 2.8877.
These statistics offer insights into the data's
distribution. When the observed mean and
variance significantly differ, it indicates over-
dispersion in the data. Over-dispersion occurs
when the observed variance exceeds what
would be expected from a Poisson distribution.

Table 2: The goodness-of-fit and estimation models with parameter for dataset of number of
COVID-19 infections in North-East, Nigeria

X COUNT PD NB GP ZIP ZINB

0 366 220.5638 360.9949 356.5746 166.0002 365.9997

1 127 249.3050 142.3100 151.5186 105.3617 125.5618

2 81 140.8957 74.3887 74.2907 105.4615 78.9154

3 40 53.0852 42.0712 39.9938 70.3743 47.4015

4 29 15.0006 24.6948 22.8921 35.2205 27.8125

5 13 3.3911 14.8126 13.6765 14.1015 16.0866

6 12 0.6388 9.0119 8.4320 4.7050 9.2148

7 10 0.1032 5.5379 5.3253 1.3455 5.2418

>7 5 0.0146 3.4286 3.4277 0.3367 2.9662

TOTAL 683 683 683 683 683 683

PARAMETER  x=1.1303 A=1.1303 r=0.6053 A=1.130 1=2.0019 A=1.3065

() 62=2.8877 p=0.6512 a=3.0243 p=0.2253 o= 0.4550
p=0.2777

CHI-SQUARE 3081.836 8.684592 12.82043 63.6937 8.4257

VALUE

P-VALUE 0.0000 0.0123 0.0251 0.0000 0.0772

AIC 2355.760 1996.5698 2002.780 2006.027 1994.154

The analysis computes the expected number of
zero counts based on the observed mean using
the formula 683 * e”(-1.1303), resulting in
approximately 220.57. However, the actual
number of zero counts in the data is 366. This
substantial difference between the expected
and actual zero counts suggests the presence of

98

excess zeros in the dataset. Excess zeros occur
when there are more zeros in the data than
expected from a typical distribution.

Given the evidence of both over-dispersion
and excess zeros, it is clear that the Poisson
model is not appropriate for this dataset. The
Poisson distribution assumes equal mean and
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variance, which is not the case due to over-
dispersion, and it does not handle excess zeros
well. Furthermore, the presence of more than
35% zeros indicates an excess of zeros.

Based on the p-values in Table 2, we have
sufficient statistical evidence to reject the null
hypothesis for Poisson regression (p-value =
0.0000), Generalized Poisson (p-value
0.0251), Negative Binomial (p-value
0.0123), and Zero-inflated Poisson regression
(p-value = 0.0000). Therefore, we conclude
that these distributions do not fit the data at the
5% level of significance.

However, based on the p-value from Table 2,
we have enough statistical evidence not to
reject the null hypothesis for the Zero-Inflated
Negative Binomial (p-value 0.0772).
Consequently, we conclude that this
distribution fits the data at the 5% level of
significance.

In summary, the Zero-Inflated Negative
Binomial distribution is the best fit for the
dataset of COVID-19 infections in North-East,
Nigeria. This conclusion is based on evidence
of over-dispersion, excess zeros, chi-square
goodness-of-fit tests, and model comparison
using the Akaike Information Criterion (AIC).
The ZINB distribution stands out with the
lowest AIC value (1994.154) compared to
other competing models in Table 2.

Table 3 displays the goodness-of-fit results for
different models applied to the COVID-19
infection data in North-Central Nigeria. The
table presents counts for various infection
levels ranging from 0 to 8, along with the
respective model predictions for each
distribution. For each infection level (x), the
table provides the observed count and the
model predictions for the Poisson (PD),
Negative Binomial (NB), Generalized Poisson
(GP), Zero-Inflated Poisson (ZIP), and Zero-
Inflated  Negative Binomial (ZINB)
distributions. These predictions represent the
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expected number of infections for each

distribution.

When examining the p-values in Table 3, we
find that there is substantial statistical
evidence to reject the null hypothesis for the

Poisson regression (p-value = 0.0000),
Generalized Poisson (p-value = 0.0008),
Negative Binomial (p-value = 0.0039), and

Zero-Inflated Poisson regression (p-value
0.0200). This leads us to conclude that these
distributions do not adequately fit the data at a
5% level of significance.

However, based on the p-value in Table 3, we
have sufficient statistical evidence not to reject
the null hypothesis for the Zero-Inflated
Negative Binomial (p-value 0.2090).
Consequently, we conclude that this
distribution fits the data at a 5% level of
significance.

In summary, the Zero-Inflated Negative
Binomial distribution is the best fit based on
the evidence provided by p-values, AIC, and
chi-square values. With an AIC value of
1700.9593, it offers a better balance between
fit and model complexity compared to other
distributions. This makes it the most suitable
choice for modeling the COVID-19 infection
data in North-Central Nigeria, accounting for
observed over-dispersion and potential excess
ZEeros.

In Table 4, we observe that the mean and
variance of the data are 1.4548 and 3.5086,
respectively. The substantial difference
between the variance and mean indicates over-
dispersion, suggesting that the Poisson
distribution's assumption of equal mean and
variance is not met. This highlights the need
for  alternative  models  capable  of
accommodating the data's characteristics.
Models designed to handle over-dispersion are
essential for an accurate fit. Additionally, the
presence of more than 35% zeros indicates an
excess of zeros.
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Table 3: The goodness-of-fit and estimation models with parameter for dataset of number of

COVID-19 infections in North-Central, Nigeria

X COUNT PD NB GP VALY ZINB

0 183 107.7705 170.0574 166.4639 183.0001 183.0001

1 109 166.4574 135.2994 139.4147 92.1109 103.5516

2 84 128.5513 86.6248 87.9959 98.3882 92.5821

3 61 66.1848 50.9737 50.5379 70.0623 61.9667

4 34 25.5565 28.6747 27.9004 37.4185 34.5116

5 25 7.8947 15.6851 15.1292 15.9874 16.8939

6 5 2.0322 8.4172 8.1380 5.6923 7.5104

7 3 0.4484 4.4547 4.3636 1.7372 3.0977

>7 1 0.0865 2.3329 2.3385 0.4639 1.2031

TOTAL 505 505 505 505 505 505

PARAMETER  x=1.5445 A=1.5456 r=1.6411 A=1.5445 A=2.1363 A=7.1349

() 6?=2.6771 p=0.4848 a=1.9370 p=0.2770 a=0.7802
p=0.2316

CHI-SQUARE 156.5338 17.29505 20.8011 13.3876 5.8709

VALUE

P-VALUE 0.0000 0.0039 0.0008 0.0200 0.2090

AIC 1812.491 1714.195 1717.990 1704.690 1700.9593

Table 4: The goodness-of-fit and estimation models with parameter for dataset of number of
COVID-19 infections in North-West, Nigeria

X COUNT PD NB GP ZIP ZINB

0 288 147.3001 277.5859 271.6486 287.9995 287.9992

1 118 214.2917 140.9850 150.3232 79.6907 110.5987

2 78 155.8833 81.6858 83.1152 97.3838 86.7712

3 52 75.5948 49.2750 47.8540 79.3367 58.9257

4 38 27.4945 30.3111 28.5613 48.4756 36.9087

5 28 7.9999 18.8623 17.5432 23.6953 21.9503

6 12 1.9397 11.8278 11.0244 9.6520 12.5913

7 12 0.4031 7.4570 7.0564 3.3700 7.0330

>7 5 0.0733 4.7204 4.5851 1.0296 3.8489

631 631 631 631 631 631

PARAMETER  x=1.4548 A=1.4548 r=0.7803 A=1.4548 A=2.4440 A=2.351

S) 6%=3.5086 p=0.6508 0=2.9798 p=0.4048 o= 0.5318
p=0.2972

CHI-SQUARE 994.7953 13.6188 21.5480 72.7226 7.7755

VALUE

P-VALUE 0.0000 0.0182 0.0006 0.0000 0.1002

AIC 2422357 2093.000 2102.539 2120.179 2081.5399

Based on the results in Table 3, we find
significant statistical evidence to reject the null
hypothesis for Poisson regression (p-value =

0.0000), Generalized Poisson (p-value
0.0006), Negative Binomial (p-value =
0.0182), and Zero-Inflated Poisson regression
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(p-value = 0.0000). This implies that these
distributions do not fit the data at a 5% level of
significance.

However, based on the p-value from Table 3,
we find sufficient statistical evidence not to
reject the null hypothesis for the Zero-Inflated
Negative Binomial (p-value 0.1002),
indicating that this distribution fits the data at
a 5% level of significance.

In summary, the analysis shows that the Zero-
Inflated Negative Binomial (ZINB) model is a
better fit for the data compared to other
models like Poisson (PD), Negative Binomial
(NB), and Zero-Inflated Poisson (ZIP). This
determination is based on a p-value greater
than 0.05, indicating that the ZINB model
statistically fits the data better. Additionally,
the lower AIC value for the ZINB model
(2081.5399) suggests a better balance between
model complexity and data fit.

In conclusion, based on the evidence from p-
values, AIC, and chi-square values, the Zero-
Inflated Negative Binomial (ZINB)
distribution provides the best fit for the dataset
of COVID-19 infections in North-West
Nigeria. It effectively accounts for over-
dispersion and the presence of excess zeros,
making it a suitable choice for modeling the
data.

Table 5 presents the results for assessing the
goodness-of-fit of various models applied to
the dataset of COVID-19 infections in South-
West Nigeria. The observed mean and
variance for COVID-19 infections in this
region are 1.6394 and 2.9724, respectively.
The larger variance compared to the mean
indicates the presence of over-dispersion in the
data. As a result, the Negative Binomial (NB),
Generalized Poisson (GP), and Zero-Inflated
Negative Binomial (ZINB) distributions
provide a better fit to the data compared to
other models, unlike the Poisson (PD) and
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Zero-Inflated Poisson (ZIP) distributions,
where the p-value falls below the 5%
significance level.

Based on the p-values from Table 5, we find
sufficient statistical evidence to reject the null
hypothesis for Poisson regression (p-value =
0.0000) and Zero-Inflated Poisson regression
(p-value = 0.0000), indicating that these
distributions do not fit the data at the 5%
significance level.

However, based on the p-values in Table 5, we
find enough statistical evidence not to reject
the null hypothesis for Generalized Poisson (p-
value = 0.1696), Negative Binomial (p-value =
0.3666), and Zero-Inflated Negative Binomial
(p-value = 0.6058), suggesting that these
distributions fit the data at the 5% significance
level.

Among the distributions that fit the data well,
the ZINB model is the preferred choice. This
preference is supported by the smallest chi-
square value and the highest p-value (0.6058),
indicating a good fit as the p-value is greater
than 0.05 (5% significance level).

The AIC values further support the preference
for the Zero-Inflated Negative Binomial
(ZINB) distribution. The fact that the ZINB
model has the smallest AIC value (1831.3818)
compared to the other models suggests that it
is the most suitable model according to this
criterion.

In conclusion, based on the evidence from p-
values, AIC, and chi-square values, the Zero-
Inflated Negative Binomial (ZINB)
distribution provides the best fit for the dataset
of COVID-19 infections in South-West
Nigeria. This distribution effectively accounts
for observed over-dispersion and the presence
of potential excess zeros, making it a suitable
choice for modeling the data.
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Table 5: The goodness-of-fit and estimation models with parameter for dataset of number of

COVID-19 infections in South-West, Nigeria

X COUNT PD NB GP ZIP ZINB

0 176 102.2818 167.6486 164.5370 176.0001 176.0000

1 125 167.6878 139.3709 143.3202 97.2252 119.6053

2 89 137.4595 92.2826 93.5175 106.1963 95.4853

3 56 75.1202 55.8992 55.3329 77.3300 62.2333

4 40 30.7893 32.2842 31.4356 42.2327 36.0001

5 22 10.0956 18.0992 17.4810 18.4518 19.2420

6 12 2.7585 9.9426 9.6431 6.7181 9.7206

7 5 0.6461 5.3818 5.2988 2.0966 4.7072

>7 2 0.1324 2.8806 2.9084 0.5725 2.2055

TOTAL 527 527 527 527 527 527

PARAMETER  x=1.6394 A=1.6395 r=1.6864 A=1.6395 A=2.1845 A=3.4525

() 6?=2.9724 p=0.4929 a=1.9836 p=0.2495 a=0.6414
p=0.1507

CHI-SQUARE 146.1064 5.4215 7.7648 29.1358 2.7196

VALUE

P-VALUE 0.0000 0.3666 0.1696 0.0000 0.6058

AIC 1950.248 1834.8136 1837.7897 1849.344 1831.3818

The results in Table 6 assess the goodness-of-
fit of various models to the dataset of COVID-
19 infections in South-East Nigeria. The
observed mean and variance for COVID-19

respectively. The larger variance compared to
the mean indicates the presence of over-
dispersion. Furthermore, the existence of more
than 35% zeros suggests an excess of zeros

infections in this region are 1.4533 and 2.4506,  (0's).

Table 6: The goodness-of-fit and estimation models with parameter for dataset of number of

COVID-19 infections in South-East, Nigeria

X COUNT PD NB GP ZIP ZINB

0 198 122.7396 184.3077 180.8182 198.0005 198.0009

1 112 178.3815 143.5297 147.6343 100.6602 109.9161

2 94 129.6239 89.1974 90.4169 101.9440 96.6193

3 59 62.7956 50.7556 50.2511 68.8295 62.3977

4 38 22.8157 27.5506 26.8011 34.8537 33.0309

5 15 6.6317 14.5214 14.0245 14.1193 15.1643

6 5 1.6064 7.5017 7.2741 4.7665 6.2566

7 3 0.3335 3.8191 3.7589 1.3792 2.3730

>7 1 0.0606 1.9229 1.9405 0.3492 0.8407

TOTAL 525 525 525 525 525 525

PARAMETER  x=1.4533 A=1.4533 =1.6777 A=1.4533 A=2.0255 2=8.8012

S 62=2.4506 p=10.4641 a=1.8591 p=0.2825 a=0.8207
p=0.2445

CHI-SQUARE 144.5888 14.9731 17.9663 6.7682 1.4963

VALUE

P-VALUE 0.0000 0.0105 0.0029 0.2384 0.82728

AIC 1822.539 1732.832 1736.237 1719.9020 1718.0877
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Based on the p-values in Table 5, there is
compelling statistical evidence to reject the
null hypothesis for Poisson regression (p-value
0.0000), Negative Binomial (p-value
0.0105), and Generalized Poisson regression
(p-value 0.0029). Consequently, we
conclude that these distributions do not fit the
data at a 5% level of significance.

However, based on the p-values in Table 5, we
have adequate statistical evidence not to reject
the null hypothesis for Zero-Inflated Poisson
(p-value = 0.2384) and Zero-Inflated Negative
Binomial (p-value = 0.82728), indicating that
these distributions fit the data at a 5% level of
significance.

In summary, Zero-Inflated Poisson, Zero-
Inflated Negative Binomial, and Negative

DOI: 10.56892/bima.v8i3.764

Binomial distributions provide a good fit to the
data at a 5% level of significance, given the
observed over-dispersion. These distributions
are better suited to capture the variability in
the data compared to Poisson and Negative
Binomial distributions.

Among the well-fitting distributions, the Zero-
Inflated Negative Binomial (ZINB) model is
preferred due to having the smallest chi-square
value and the highest p-value, signifying a
good fit with a p-value greater than 0.05.

When considering AIC values, the ZINB
model stands out as the best choice, with the
smallest AIC value (1718.0877) among the
competing models.

Table 7: The goodness-of-fit and estimation models with parameter for dataset of number of
COVID-19 infections in South-South, Nigeria

X COUNT PD NB GP ZIP ZINB

0 166 106.6866 165.4251 163.6056 166.0002 166.0000

1 137 165.4383 136.3764 139.4708 105.3617 135.0187

2 86 128.2722 88.1515 88.6367 105.4615 88.4294

3 53 66.3037 51.7489 50.9384 70.3743 52.1547

4 25 25.7042 28.8436 28.0302 35.2204 29.0613

5 15 7.9719 15.5633 15.1111 14.1012 15.6253

6 12 2.0603 8.2128 8.0663 4.7050 8.1976

7 7 0.4564 4.2643 4.2866 1.3455 4.2244

>7 2 0.0884 2.1871 2.2744 0.3367 2.1475

TOTAL 503 503 503 503 503 503

PARAMETER x=1.5507 A=1.5501 r=1.7602 A=1.5507 A=2.0019 A=1.8508

S) 52=2.8415 p=0.4684 a=1.9063 p=0.2253 a= 0.5405
p=0.1437

CHI-SQUARE 243.7465 4.1375 4.2381 63.6937 4.2995

VALUE

P-VALUE 0.0000 0.5298 0.5156 0.0000 0.3669

AIC 1808.970 1705.9314 1706.7018 1742.027 1707.9057

Table 7 displays the goodness-of-fit ~ The larger variance compared to the mean

assessment for different models applied to the
dataset of COVID-19 infections in South-
South Nigeria. The observed mean and
variance for COVID-19 infections in this
region are 1.5507 and 2.8415, respectively.
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suggests over-dispersion in the data. Notably,
the Negative Binomial (NB), Generalized
Poisson (GP), and Zero-Inflated Negative
Binomial (ZINB) distributions provide a better
fit to the data compared to other models such
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as Poisson (PD) and Zero-Inflated Poisson
(ZIP). These distributions are better equipped
to handle the increased variability observed in
the data.

Based on the p-values in Table 5, there is
compelling statistical evidence to reject the
null hypothesis for Poisson regression (p-value
0.0000) and Zero-Inflated Poisson
regression (p-value = 0.0000), indicating that
these distributions do not fit the data at a 5%
significance level.

However, based on the p-values in Table 5, we
have adequate statistical evidence not to reject
the null hypothesis for Generalized Poisson (p-
value = 0.5156), Negative Binomial (p-value =
0.5298), and Zero-Inflated Negative Binomial
(p-value 0.3669), suggesting that these
distributions fit the data at a 5% significance
level.

In summary, Generalized Poisson, Zero-
Inflated Negative Binomial, and Negative
Binomial distributions provide a good fit to the
data at a 5% significance level, given the
observed over-dispersion.

Among the well-fitting distributions, the
Negative Binomial (NB) model is preferred.
This preference is supported by both the
smallest chi-square value (4.1375) and the
highest p-value (0.5298), indicating a good fit
with a p-value greater than 0.05.

In the context of AIC Model Comparison, the
Negative Binomial (NB) model stands out as
the best option, with the smallest AIC and BIC
values (1705.9314) among the compared
models.

In conclusion, we find that the Negative
Binomial (NB) distribution is the most suitable
model for the dataset of COVID-19 infections
in South-South Nigeria. This distribution
effectively accounts for over-dispersion and
provides a better fit to the data, as supported

by both statistical tests and information criteria.
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DISCUSSION
The analysis undertaken in this study provides
valuable insights into the selection of

appropriate statistical models for COVID-19
infection datasets in different regions of
Nigeria. It sheds light on the challenges posed
by over-dispersion and the presence of excess
zero counts, emphasizing the need for models
that can effectively handle these complexities.

In Table 2, which pertains to the North-East
region, the study revealed that both Poisson
models and the Negative Binomial model were
not well-suited to address the over-dispersion
and excess zero issues within the dataset.
However, the Zero-Inflated Negative Binomial
(ZINB) model consistently emerged as the
superior choice. This preference for ZINB was
confirmed through rigorous evaluation, taking
into account chi-square statistics, p-values, and
AIC values.

Similarly, in Table 3, focusing on the North-
Central  region, the data  exhibited
characteristics of over-dispersion and excess
zeros. Once again, the ZINB model
demonstrated its effectiveness in providing a
better fit for the dataset compared to other
models.

Table 4, which examined the North-West
region, further supported the trend observed in
previous tables. Where, ZINB model
consistently outperformed other models in
addressing the over-dispersion and excess zero
counts in the data.

Moving on to Table 5, which pertains to the
South-West region, the presence of a larger
variance reinforced the notion of over-
dispersion in the COVID-19 infection dataset.
This region also favored the Negative
Binomial and Zero-Inflated Negative Binomial
models, with the ZINB model emerging as the
best fit, further emphasizing its consistency in
handling these complexities.



In Table 6, for the South-East region, the study
once again found that the Zero-Inflated
Negative Binomial model was the most
suitable choice for addressing over-dispersion
and excess zero counts.

Finally, in Table 7, representing the South-
South region, the analysis pointed to the
suitability of the Negative Binomial model,
which consistently captured the complexities
associated with over-dispersion.

Collectively, this analysis highlights the
noteworthy consistency in the suitability of
ZINB models for representing COVID-19
infection datasets across various Nigerian
regions. These models have proven to be
highly effective in accounting for over-
dispersion and the presence of excess zero
counts, accurately representing the intricate
patterns of COVID-19 infections in Nigeria.

This study underscores the importance of
choosing statistical models that are not only
statistically sound but also capable of
accommodating the unique characteristics of
the data at hand. It provides valuable guidance
for researchers and policymakers seeking to
model and understand the spread of COVID-
19 across different regions, emphasizing the
significance of addressing over-dispersion and
excess zero challenges in their analyses.

CONCLUSION

In conclusion, the comprehensive analysis
conducted in this study provides valuable
insights into the selection of appropriate
statistical ~models for assessing and
understanding COVID-19 infection data in
Nigeria. The overarching theme that emerges
from this analysis is the consistent challenge
posed by over-dispersion and the presence of

excess zero counts in the dataset. These
challenges render the traditional Poisson
distribution  inadequate = for  accurately

modeling the COVID-19 infection trends
across different Nigerian regions.
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While the limitations of the Poisson
distribution become evident, the study
highlights the unwavering performance of the
Zero-Inflated Negative Binomial (ZINB)
model. In the face of over-dispersion and
excess zeros, ZINB consistently excels,
offering a superior fit to the data. The ZINB
model's remarkable performance is attributed
to its ability to simultaneously handle over-
dispersion and account for the presence of
excess zero counts. This dual capability allows
it to effectively capture the complex patterns
of COVID-19 infections in Nigeria.

Furthermore, the Negative Binomial model
stands out as a suitable choice for regions like
the South-South, where excess zero counts are
not a prominent feature in the dataset. In such
cases, the Negative Binomial model
effectively fits the data, providing valuable
insights into the dynamics of the pandemic.

Across the diverse Nigerian regions, ZINB and
Negative Binomial models consistently deliver
results that accurately represent the nuanced
trends in COVID-19 infections. These models
not only account for over-dispersion but also
effectively address the presence of excess

zeros, making them valuable tools for
policymakers, researchers, and healthcare
professionals seeking to gain a deeper

understanding of the pandemic's dynamics in
different areas.

The insights derived from this analysis have
far-reaching implications for public health
strategies in the fight against COVID-19 and
future infectious and epidemiological diseases.
By choosing statistical models that can
effectively handle over-dispersion and excess
zeros, decision-makers can make more
informed and targeted interventions. These
findings offer a valuable guide for crafting
effective strategies to combat COVID-19 and
similar diseases, taking into account the
unique challenges presented by different
regions within Nigeria.
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In summary, the consistent suitability of ZINB
models in representing COVID-19 infection
datasets across various Nigerian regions,
coupled with their ability to handle over-
dispersion and excess zeros, underlines their
crucial role in understanding the dynamics of
the pandemic. These models provide a
valuable tool for researchers and policymakers
as they work to combat the spread of COVID-
19 and other infectious diseases, ultimately
contributing to more effective public health
strategies and interventions.
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