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ABSTRACT

In this work, a fractional mathematical model of crime dynamic with police and public
education is designed and used to access the impacts of the intervention in controlling crime
spread. The model's positivity and boundedness were established, demonstrating its
epidemiological well-posture. The model's asymptotically stable local and global states were
established using the basic reproduction number that was established. When the basic
reproduction number  0R , less than unity, indicate that crime will be reduced or eliminated
in the community; a reproduction number greater than unity indicates that crime will continue
in the community. The model was validated using yearly data from 2002-2021, sourced from
Macrotrends. The simulation of the fractional crime model combined with public education
and police presence, have shown to be effective in lowering crime rates.
Keyword: Crime, Fractional, Stability Analysis, Modelling, Police, Dynamics, Public
Education.

INTRODUCTION
A criminal act is defined as a purposeful
behaviour that is clearly characterized as
being against the law, socially damaging,
and penalized (Edge et al., 2022). Financial,
violent, property, and moral crimes are
among the most common types of crime that
significantly affect many cultures in
developing countries, particularly those in
Africa and Latin America (González-Parra et
al., 2018). Although crime is a complex
phenomenon, one of the main risk factors for
its rise, especially in urban areas, has been
identified as unemployment (Block & Block,
1984; Garside, 2015; Ajayi & Adefolaju,
2013; Ayodele, 2015; Squires et al., 2008;
McMillon et al., 2014; Nyabadza et al.,
2017). According to a UN assessment,
young people who join criminal gangs
account for 40% of the unemployed because
they cannot find gainful jobs. Poverty,
unemployment, unstable families, political
unrest, and demographic shifts are the main
causes of crimes. Emerging economies have
challenges with the jobless rate among youth
and the rise in inequality. Crime affects

progress and society, and social structure has
an impact on how it spreads. Understanding
the nature of crime and its contributing
factors is necessary to develop strategies to
lessen its prevalence and effects (Pasour et
al., 2008; Shukla et al., 2013). Crime
encompasses illegal behaviours that are
punished by victims and criminal institutions.
It is a social status issue. Contact with
criminal groups influences the occurrence of
more crime, which is determined by
motivated offenders, suitable targets, and a
dearth of guardians. The existence of a
crime-free equilibrium cannot be achieved,
even with the premise of contagion relaxed,
according to a mathematical model of crime
dynamics (McMillon et al., 2014).
Differential equations, for instance, have
been used to show how drug addiction has
spread like wildfire (Behrens et al., 1999;
Kwofie et al., 2023; Atangana & Igret, 2021).
Gonzalez-Parra et al. (2018) found that fear
can reduce criminal intention by diminishing
anticipation of benefits in their model of peer
pressure on college-age bulimia. The rational
decision-making theory proposed by Becker,
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which is the basis for this technique (Arora
et al., 2018), serves as an inspiration. Crime
is concentrated where there is a greater
financial gain from committing the crime
than there is an opportunity cost
(Partohaghighi et al., 2022). The factors
Wang et al. (2023) considered while
assessing group crime activities. Wang et al.
(2023) evaluated group crime activity by
considering a variety of costs related to
various societal strata and potential offenders.
Mataru et al. (2023) developed a
mathematical model to address
unemployment-related criminality in
developing nations. The model, based on
Lipschitz condition and epidemiological
principles, suggests employing employment
tactics and vocational training to reduce
crime. Chikore et al. (2023) developed a
dynamic system analysing criminal activity
and policing efficiency, demonstrating bi-
stability and potential for predictive use with
real data. A fractional mathematical model
for the transmission of crime is put forth by
Bansal et al. (2024), who divide society into
six clusters: the judiciary, law enforcement,
convicted, free, and vulnerable. Fractional-
order differential and integral operators have
been shown to be valuable in more recent
studies, which have also shown how well
they work when simulating complicated real-
world processes (Atangana, 2021; Podlubny,
1999). Non-integer-order models have been
found to be more effective than integer-order
systems in specifying dynamical behaviours.
A fractional-order crime transmission model
taking into account five classes—law-
abiding citizens, non-jailed criminals,
incarcerated criminals, prison-released
individuals, and recidivists—was presented
by Arora, Mathur, and Tiwari in 2023. It
measures local stability, establishes the
proper length of incarceration, and analyses
the effects of recidivism on society. Nwajeri
et al. (2023) presented a novel co-dynamic
fractional order system to mitigate the

destruction brought about by drug trafficking
and money laundering. The system includes
those who commit both crimes and those
who are vulnerable due to their connections
to drug trafficking. The stability framework
maintains its stability when all conditions are
met, and the model contributes to our
understanding of how these illegal actions
function in society. Partohaghigh et al. (2022)
use three operators—Atangana-Baleanu-
Caputo, Caputo, and Caputo-Fabrizio
derivatives—to study the application of
fractional derivatives in the construction of
non-integer criminal system models. In the
USA, they develop approximate solutions by
numerical approaches using real beginning
conditions for subgroups. Rahat et al. (2023)
used fractional order calculus and Newton's
polynomial to study the population dynamics
of financial crime. They created financial
crime equilibria, computed reproduction
number, and presented a fractional-order
model. Public education campaigns have the
potential to increase knowledge of the
negative effects of criminal behaviour,
inform those who may be at danger of
committing crimes about the resources that
are available to them, and encourage
constructive alternatives to illegal activity.
This operator's capacity to identify detailed
and non-local patterns in a system's
behaviour is what motivates its use in the
analysis of the complex linkages between
crime rates, public education levels, and
police intervention techniques., we develop a
mathematical model to explore the dynamic
of crime transmission in terms of the
Atangana Beleanu fractional operator with
police innervation and public education.
Preliminary
Definition 1. (Atangana et al., 2020)
The fractional integral associated with the
new fractional derivative with non-local
kernel is defined as:

     
 

    1

0

1 t
ab
a tI U t U t U t d

M M
     

  


       . (1)
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Definition 2 (Atangana & Baleanu, 2016).
Let  ,U C a b , a b ,  0,1 , then

     0
ab abc
a t tI D U t U t U a      . (2)

Theorem 3 (Thabet & Baleanu, 2018; Caputo & Fabrizio, 2015)
The general transform of the Atangana-Baleanu fractional integral of the function  f t is

given as

             1

0

0
1

1

abc
t

p L U t p p UB
L I U t p

p

 









     



. (3)

Lemma 1 (Hossein & Moshen, 2018)
Let  x t  be a continuous and differentiable function. Then for any time instant

0t 

       *
0 0* *ln 1abcC abc

t t

x t t
D t D t    

                
. (4)

Model Description
The model describe the total population
 N t of individuals in a society subdivided

into different class at time ,t as follows:

susceptible population  S t , population of

the individual exposed to the crime  E t ,
population of those committing the crime
 D t , population of individual arrested by

security agents as a result of the crime
committed and sentence to prison  J t ,
population of individual acquainted by the
court or those that completed their sentence
period  R t while  P t is the police
population . Observe that the population is
open, as demographic measures are
considered and the recruitment rate in the
susceptible population is the constant  .
The manifestation of a crime remains unveil
when it is been detected, and individuals in a
crime society are assume to be susceptible

until are exposed to the crime by means of
interaction with criminals, and as a result
one may developed an interest in the crime
and will therefore migrate to the exposed
class at a rate  , where

 1 D
N





 ,  and  are

proportion of the population of the
community that are educated and the
education efficacy respectively . Individuals
in the exposed population may decide to join
the criminals at the rate  , and can
consequently may die as a result of the crime
at a rate d , or be apprehended by a honest
and dedicated security personals at a rate  .
Individual who completed their sentence are
release at the rate  . Acquitted Individual
may decide to go back committing the crime
at the rate  and in all the classes,  is the
natural death rate.  is the recruitment rate
into the police force, and  is the retirement
rate.
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Figure 1. Schematic Diagram of the Model
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(5)

Basic Properties of the Model
Positivity of the Solution
Theorem 1: Suppose that the initial data for the model (5)
be      0 0,  0 0,  0 0,  S E D        (0) 0,  0 0, 0 0,J R P   , then the

solution          ,  ,  ,  ,  ,  ( )S t E t D t P t C t J t and  R t of the model with positive initial data
will remain positive for all 0t  .
Proof.
From the first equation of the model (5), we have

   
0

1abc
t

D
D S t S

N
  


 
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 

(6)

Following the approach in Atangana, (2023), yield

   
  

      
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Similarly it can be shown that          0,   0,   0,  0,  0 , ( ) 0S t E t D t P t C t J t     

and   0R t  .
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(7)

Hence all the solutions of the model remain positive for all 0t  .
The Invariant Region

Lemma 2: The closed set

   
5, , , , ;   ,   ;  H P H PS E D J R N P N

   

           
B B B .

is positively- invariant and attract all the positive solutions of the model
Proof
Adding equations in system (5), we have

0
abc

tD N N    . (8)
Taking the Laplace transform of (8) and further simplification yield

     11 1 0C CN E t E t B N
H H

 
 

     

                      

.

Similarly

 
         11 1 0P PN E t E t B N

M M M
 

 

     
 

 

                             
.

Where    1H B      and     1M B       

Since E t
H




  
 

, and
 

E t
M




   
  
 

tends to zero monotonically as t ( Choi et

al., 2014). In particular
CN




 and
 PN  





. Hence, B is positively invariant and an

attractor so that no solution path leaves through any boundary of B . Since the region B is
positively-invariant, the usual existence and uniqueness hold for the system (5). Hence it is
sufficient to consider the dynamic of the flow generated by the crime model (5) in the region
B .
Crime Free Equilibrium Point ( 0E ) and Stability Analysis

The crime free equilibrium point ( 0E ), is obtained as
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0 , 0 , 0 , 0 , 0 ,
  

 
   

E

The local stability analysis can be established using the next generation matrix approach (Van
den Driessche & Watmough, 2002) and using the symbols F and v in (Van den Driessche &
Watmough, 2002), given by

 0 1
0 0

  
  
 

F and
0

v
d P

 
   

 
    

It follows that the crime basic reproduction number ( 0R ) is given as

     
     

1
0

1
v

d
   
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     

  
 

      
R F .

Lemma 3. The Crime Free Equilibrium point ( 0E ), of the crime model (5) is locally

asymptotically stable (LAS) whenever 0 1R and unstable whenever 0 1R .
Proof
The Jacobian matrix of the model (5.0) is obtain as below

 

   
 1

2
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 
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J E .

Thus,

1 ,  while the remaining eigenvalues are obtained from the polynomial (9)

  5 4 3 2
4 3 2 1 0 0P a a a a a            . (9)
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 
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R
Now, applying the Routh-Hurwitz criterion (Hassan et al., 2022) which implies that the
eigenvalues of (9) are all negative if and only if   0,  1,2,3,4,5ia i  ,

2 2 2 2
2 3 1 4 1 2 3 4 1 4 4 3 52a a a a a a a a a a a a a     and 0 1R . Hence,    < 0  1, 2,..., 6 ,i i 

 arg i   arg
2i
    , which implies that 0E , is locally asymptotically stable.
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Theorem 2: The Crime Free Equilibrium Point ( 0E ) with 0  , of the model (5) is Globally
Asymptotically Stable (GAS) whenever 0 1R , and unstable if otherwise.
Proof
Consider the Lyponuv function
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whose fractional derivative is
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tD
 L if and only if 0 1R and

0 0abc
tD
 L if and only if 0D  with 0  . Since

all the parameters are non-negative it follows that, ℒ is a Lyapunov function on B .
Furthermore the largest compact invariant set in

             0, , , , , : 0abc
tS t E t D t J t R t P t D       B L is the singleton set ( 0E ).

Therefore by LaSalle’s Invariant Principles every solution to the model with initial condition
in B , approaches 0E as t whenever 0 1R so that 0E is GAS in B if 0 1R .

Crime Present Equilibrium Point ( 1E )

Let  1 , , , , ,S E D J R P     E and
 1

 
D

N
 








 be the crime present

equilibrium point and recruitment rate respectively, where

 
 

**
3 4 7 3 4

3 4 7

1h h h h h P
S

h h h
   

 






 



,

   
 

2**
3 4 7 3 4

1 3 4 7

1h h h h h P
E

hh h h

    

 

 




 




3 4

7

h h
D

h
 

  ,
5

P
h

 
 , 4

7

hJ
h

 
  ,

7

R
h

 
 
 ,

     ** **
7 1 2 3 4 1 1h h h h h P h P         .

Evaluating
 1

                                                    
D

N
 








 . (11)

yield

  2

1 2 3 0q q q     . (12)
where,

     ** **
1 3 4 1 1 2 3 4 3 4 3 4 3 4 41q h h P h h h h h h h P h h h h h            
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     
   

2 ** ** **
2 1 3 4 3 4 1 1 2 3 4 3 4 1

1 2 3 4 0 1 2 3 4 3 4 4

1 1

      + 1

q h h h P h h P h hh h h h h P h

hh h h R hh h h h h h

      

     

     

   

   ** 2 2 2
3 1 2 3 4 1 1 2 3 4 01 1q h h h h P h h h h h         R

whose solution is
2

2 2 1 3

1

4
2

q q q q
q

   
 . (13)

Thus, the following results.
Theorem 5. The model (5) has
i. a unique endemic equilibrium if 3 0q 

ii. a unique endemic equilibrium if 2 0q  and 3 0q 

iii. two endemic equilibrium 2 0q  , 3 0q  and 0 1R
iv. no endemic equilibrium if otherwise.

Theorem 6. The model (5) has a backward bifurcation at 0 1R if and only if 0a  where

    3 2 2 3 6 4 32 1a w v w w w v v           .
Proof
Let  1 , , , , ,S E D J R P     E denote the arbitrary endemic equilibrium point of the
model (5). Now, let

1 2 3 4 5 6, , , , ,S x E x D x J x R x P x      . The model (5) can be re-
presented in the following form.

     

     

   
   
   
   

3
0 1 5 1 1

3
0 2 2 2

0 3 2 5 6 3 3

0 4 3 6 4 4

0 5 4 5 5

0 6 6 6

1
1

1

1

abc
t

abc
t

abc
t

abc
t

abc
t

abc
t

x
D x t x x f

N

x
D x t x f

N
D x t x x d x x f

D x t x x x f

D x t x x f

D x t x f













 
   

 
 

   

  

 

 

 
          

    

      
   

   


     

(14)

The Jacobian matrix of the systems (5) evaluates at the crime free equilibrium point is
obtained as

 

   
 1

2
0

3

4

5

0 1 0 1 0
0 1 0 0 0
0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

h
h

h
h

h

    
 

 



    
   
 

  
 

 
 

   

J E . (15)
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Now, 0 1R and suppose  is the bifurcation parameter, hence

     
   1
d     


    


      

 
.

with   , the transformed system (14) has a simple eigenvalue with zero real part and all
the other eigenvalues are negative. Thus, by Centre Manifold Theorem (Castillo-Chavez &
Song, 2004), we investigate the transform matrix (15), near  . The right eigenvectors of

 0   
J E , denoted as  1 2 3 4 5 6, , , , ,w w w w w w w are obtain as

   1 3 2 3 3 3 4 5 6 31 ,    1 ,    0,  0,  0,  w w w w w w w w w w   
 


        


.

Similarly the left eigenvectors denoted as  1 2 3 4 5 6, , , , ,v v v v v v v are obtain as

  1 3
1 2 3 3 3 4 5 5 6

1 3 4

1
0,    ,  0,  ,  ,  0

v v
v v v v v v v v v

h h h
     

       .

The bifurcation coefficients a and b are obtained as described in Theorem 4.1 (Castillo-
Chavez & Song, 2004) as,

    3 2 2 3 6 4 32 1a w v w w w v v          

 2 3 1 0b v w   

Theorem 5. The crime present equilibrium point  1E , with 0 , of the model (5) is

Globally Asymptotically Stable (GAS) if 0 1R .
Proof
Consider the function

ln ln lnS E D S DS S S E E E D D D
S E DE




    
    



     
             
     

M .

whose derivative is

0 0 0 01 1 1ab c ab c ab c ab c
t t t t

S E D S DD D S D E D D
S E DE

   


    



     
          
     

M (16)

Substituting the values 0 0 0, ,abc abc abc
t t tD S D E D D   in (14.0), gives

   

 

0 1

2

1 1
1 1

     1

abc
t

DS DSS ED S h E
S N E N

D S D E h D
DE

    
 

 


 

  



       
                     

 
   

 

M

Further Simplification, yield

0 2 3ab c
t

S S S D E S D ED S S D
S SS D E S D E

  
   

  
   

   
          

   
M

Since the arithmetic mean exceeds the geometric mean the following inequality hold:

 2 0,  3 0S S S DE S D E
S SS D ES DE

   

          .
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Furthermore, since all the model are non-negative, thus 0 0abc
tD
 M , if D D  , E E 

and 0  , then the largest compact invariant set in B such that 0 0abc
tD
 M is the singleton

set ( 1E ) then by LaSalle Invariant Principle it implies 1E , is globally asymptotically stable
(GAS) in the interior of B .

Model Fitting
To validate the model (5), we fitted it using
yearly data from Macrotrends, (2023),
covering the years 2002 to 2021. The time
series visualization of the (5) least square fit
model is displayed in figure 4. The

developed model was fitted with the
traditional nonlinear least squares method,
which involved using the built-in Matlab
R2023a and the optimizer function
"lsqcurvefit" to determine the values of the
unknown parameter,  .

Figure 2. Time series data on reported cases of crime in Ghana. Source: Macrotrends, 2023

Figure 3. Time series data on reported cases of crime in Ghana. Source: Macrotrends, 2023.
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Figure 4. Comparison of observed crime cumulative data from Ghana (dotted lines) and
prediction (solid curve).

Sensitivity Analysis
Sensitivity analysis shows how important
every parameter is for the transmission of
illness. It is employed to determine which
factors, because to their substantial influence,
should be the focus of intervention efforts.
Sensitivity indices allow us to evaluate the
proportionate change in a variable when a
parameter changes. The normalized forward
sensitivity index of a variable with regard to
a parameter is the ratio of the relative change
in the variable to the relative change in the

parameter. Table 2, showed that all of the
factors have positive indices. This indicates
that if one of the parameters  ,  ,     is
increased while the others remain same, the
effective reproduction number will increase,
increasing the chance of a crime outbreak.
On the other hand, the parameters
 ,  ,  ,  ,  ,  ,  d v     , indices are negative,
meaning that raising one of them while
keeping the others same reduces the
effective reproduction number and, in turn,
the burden of crime on human populations.

Table 1: Parameter description.
Parameter Description
 1
 0.0489
 0.0301
 -0.1126
d -0.9058

 -0.0303

 -0.2880

 -0.2880
v -0.0303
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Figure 5: Sensitivity indices of the reproduction number with respect to parameter values in
the reproduction number.

Table 2: Parameter Values
Parameter Description Value Source
 Recruitment rate in the susceptible class 101.0302/day Kwafie et al, 2023
 Effective contact rate 0.022/day Kwafie et al, 2023
 Progression rate from exposed class to the crime class 0.000714/day Kwafie et al, 2023
 Proportion of removed criminals that go back to

committing crime
0.000429/day Kwafie et al, 2023

 Retired rate of the police force 0.005/day Misra, 2014
 Natural death rate 0.0000367/day Kwafie et al, 2023
d Death rate as a result of the crime 0.00052/day Misra, 2014

 Police force recruitment rate 0.032/day Assumed
 Progression rate from J to R 0.00227/day Kwafie et al, 2023
 Education program efficacy 0.43/dimensionless Kwafie et al, 2023
 Proportion of the population that are educated 0.53/dimensionless Kwafie et al, 2023
 Progression rate from removed class to crime

population
0.7/dimensionless Kwafie et al, 2023

 Progression rate from I to J 0.00000127/day Fitted

Numeral Scheme and Simulation
We employ approached in Toufit & Atangana (2017), to develop the numerical scheme for
the model (5). Consider the first equation of model (5)

    
 
0 1

0

,

0 0

ABC
tD S t F t S t

S S

 

 
. (17)

where,       
1

1
, 1

D
F t S t R S

N
 

   
 

      
 

Taking the Laplace transform of (17) and Simplifying, yield
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      
           1 1

11 10 , ,L S t S L F t S t L F t S t
s M M s

 
 


   . (18)

Taking the inverse Laplace of (18) and using the Convolution Theorem, yield

                 1
1 1

0

10 , ,
t

S t S F t S t F S t d
M M

     
  


   

  . (19)

At a given point 1,   0,1,2,...nt n  , then equation (19) can be written as

                
1

1
1 1 1 1

0

10 , ,
nt

n n nS t S F t S t F S t d
M M

     
  




 


   
  ,

                
1

1
1 1 1 1

1

10 , ,
k

k

tn

n n n
k t

S t S F t S t F S t d
M M

     
  




 



   

   (20)

Applying the Lagrange polynomial interpolation on the interval  1,k kt t , that is

       

     

1 1
1 1 1 1

1 1

1 1 1 1

, ,

           , , ,

k k
k k k k k

k k k k

k k
k k k k

t t
S F t S t F t S t

t t t t
t t
F t S t F t S t

h h

 


 

 
 

 

 

 
 

 

 
 

(21)

where 1k kh t t  
Hence, the approximation (21) is included in (20), to have
   

        
     

   
     

1

1

1

11
1 1 1

1

11 1 1
1

1

0

,1                ,

,
                .

k

k

k

k

n

tn
k k

n k n
k t

tn
k k

k n
k t

S t S

F t S t
F t S t t t d

M M h

F t S t
t t d

M h





    
  

   
 








 



 






 
    

   
 
   
   

 

 
Let

        

       

1
1

,1 1 1 1 1 1 1 1 1

1 1
1 1 1 1 1

1

1         .
1

k

k

t

k n k k n k k k n k
t

k k n k n k

W t t d t t t t t t t t

t t t t t t

  


  

  


 




       

 
    

           

      



and

           

     

1
1

,2 1 1 1 1 1 1 1

1 1
1 1 1

1

1         .
1

k

k

t

k n k k n k k k n k
t

n k n k
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(c) (d)

(e) (f)
Figure 5: The Numerical visualization for model (5) with different fractional order.

(a) (b)

(c)
Figure 6: Numerical visualization showing the impact of contact rate  on the model (5), for

0.85  .



DOI: 10.56892/bima.v8i2B.733

Bima Journal of Science and Technology, Vol. 8(2B) July, 2024 ISSN: 2536-6041

310

(a) (b)

(c)
Figure 7: Numerical visualization showing the impact of  (police intervention rate), on the

model (5), for 0.85  .

(a) (b)
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(C)
Figure 8: Numerical visualization showing the impact of ,  (public education) on the

model (5) for 0.85  .

DISCUSSION
The outcomes of a numerical simulation of
the model (5) are shown in figure 4(a) to
figure 4(f), which also shows how memory
influenced each compartment as the order
increased. As a result of migration into the
criminal class, figure 4b, shows a decline in
the exposed class population and Figure 4a
shows an increase in the susceptible
population. In contrast to the observed
increase in the population of the crime class
when the order is increased, figure 4 (d), (e),
and (f) shows a drop in population when the
order decreases. Figure 5(a) to figure 5(b)
showed the occurrence of endemic locations
with different fractional orders. Figure 6,
shows that he dynamics of the exposed
population, crime population and the jail
population may all be significantly impacted
by an increase in the effective contact rate
from 0.022 to 1.92. When the effective
contact rate increases, people are more likely
to come into contact with one another, which
could result in a higher likelihood of crime
transmission within the exposed community.
This may lead to a rise in the number of
people who are exposed to crime, which lead
to increase in the size of the exposed
population. Furthermore, social relationships
and patterns in communities may be
impacted by the higher effective contact rate,
and this could have an impact on crime rates.
A higher contact rate may lead to more

chances for criminal conduct, which can
enhance the crime rate among the populace.
Since an increase in crime rates brought on
by the higher effective contact rate result in
an increased in the number of persons who
are detained and arrested, the consequences
on the jail population could also be
significant.
The dynamics of the exposed population,
crime rates, and the jail population are all
affected in different ways by an increase in
the police intervention rate from 0.00000274
to 0.0274, as shown in figure 7. An increase
in the police intervention rate denotes a
greater degree of law enforcement
engagement in addressing and averting
criminal activity in a neighbourhood. There
were fewer people in the exposed population
as a result of this increase's effects. This is
because increased police presence could
discourage would-be criminals, decreasing
the chance that crimes would be committed
and, consequently, the number of people
who are exposed. The proactive steps taken
by law enforcement to catch and prevent
criminals can also lead to a fall in crime rates,
as evidenced by the rise in police
intervention rates. Stricter enforcement of
the law and a greater presence of police
personnel may help to curb criminal activity,
which in turn lowers the population's overall
crime rates. Nevertheless, a rise in the rate of
police intervention may result in an increase
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in the jail population even in the face of
declining exposed and criminal populations.
This is due to the fact that increased police
involvement may lead to more arrests and
convictions, which in turn may result in a
rise in the prison population.
Figure 8 shows that if more members of the
vulnerable population receive knowledge on
crime, the exposed class may decline. This is
because education serves to shield people
from being exposed to criminal activity. This
could therefore result in a decline in the
number of people incarcerated and crimes
committed. Raising awareness and teaching
people about crime prevention may have a
good effect on decreasing criminal behaviour,
which in turn may reduce the number of
people who commit crimes and wind up
behind bars.

CONCLUSION
This study presents a fractional mathematical
model of crime dynamics with police and
public education, demonstrating its positivity
and boundedness. The model's
asymptotically stable local and global states
are established using the basic reproduction
number, validated using yearly data from
2002-2021. The fractional crime mode
model reveals complex relationships
between elements influencing criminal
behaviour, facilitating more informed
decision-making and policy formulation in
crime prevention and law enforcement
strategies. Crime model simulations, when
combined with interventions like public
education and increased police presence,
have been shown to be effective in lowering
crime rates. A higher effective contact rate
increases the probability of criminal activity,
leading to more interactions and criminal
behaviour within the community. However,
deploying police intervention and public
education programs can minimize this
increase by addressing and lowering the
number of exposed people, infected people,
and eventually incarcerated individuals.
Public education can also foster healthy

habits, raise awareness of crime prevention
strategies, and provide individuals with
resources to make better decisions. By
addressing the root causes of crime, a safer,
more secure environment can be created for
the community.
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