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ABSTRACT
Measles remains a significant public health concern globally, despite the availability of vaccines.
Understanding the dynamics of measles transmission through mathematical modeling is crucial
for designing effective control strategies. In this study, we present a comprehensive mathematical
model that incorporates susceptible, exposed, infectious, recovered and vaccinated compartments
to capture the complexity of measles dynamics. We conducted a global stability analysis of the
proposed model to explore the long-term behavior of measles transmission dynamics. By
analyzing the model's equilibrium points and their stability properties, we elucidate the conditions
under which measles can persist or be eradicated within a population. Our analysis accounts for
the impact of vaccination coverage and vaccine efficacy on the dynamics of measles transmission.
Furthermore, we perform sensitivity analysis to identify key parameters driving the persistence or
elimination of measles. We assess the effectiveness of vaccination strategies in reducing measles
incidence and our findings provide valuable insights into the dynamics of measles transmission
and the potential impact of vaccination programs on disease control which shows a 19.5%
vaccination rate effectively prevents transmission, while a 1.25 percent decreases transmission but
cannot completely eliminate it, and a 0.57% rate suggests significant spread necessitates further
actions or higher vaccination rates.
Keyword: Measles, Transmission, Global stability, Vaccination

INTRODUCTION
Measles is a highly contagious disease,
primarily affecting children, and vaccination is
the most effective method to prevent its spread.
Measles mortality decreased from 761,000 in
2000 to 130,000 in 2022 due to vaccination.
The disease remains active for up to two hours,
affecting nine out of ten unvaccinated contacts.
Community-wide vaccination is the most
effective method for measles prevention, with
routine and mass immunization campaigns
reducing global measles deaths (WHO, 2023).
Measles epidemiology is a crucial field of
study for scientists, utilizing mathematical,

theoretical, and experimental methods to
determine effective control and prevention
methods globally. Momoh et al, (2013) looked
at the effects of asymptomatic people
throughout the latent period on measles
dynamics using an SEIR deterministic
epidemic model. Kuddus et.al (2021)
developed a modified measles compartmental
model in Bangladesh, revealing two
equilibrium points and a significant impact of
transmission rate, progression rate, and double
dose vaccination rate. Jaharuddin and
Bakhtiar's 2020 mathematical model uses the
Pontryagin maximum principle to identify
optimal controls for minimizing measles
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exposure and infected individuals,
demonstrating effective reduction in cases.
Abadi et al, (2022) applied a model for
measles virus transmission in Jakarta,
Indonesia, revealing that hospitalization for
measles patients improved vaccination
effectiveness, urging city policymakers.
Abboubakar et al, (2022) utilized the Caputo
derivative to model measles transmission
dynamics, demonstrating its unique solution
and global stability, and validating its results
through simulations. Sowole et al, (2023)
utilized a mathematical deterministic
modeling method to study measles disease
prevalence and control in Nigeria, highlighting
the significant impact of control measures.
Dipo Aldila and Dinda Asrianti developed a
modified SVIQR model for measles infection
control, establishing a measles-free and
endemic equilibrium using 0R as an indicator.
Alemneh and Belay (2023) developed a
SVIRP model for measles, revealing indirect
contact rate maximizes transmission dynamics,
and prevention and treatment strategies
significantly reduce disease effects. A
mathematical model by James Peter et al,
(2022), revealed that combined control
strategies reduce measles infection rates faster
than single strategies, emphasizing the
importance of vaccination rates and
hospitalization in controlling the disease in
Nigeria. Motivated by the above literature, we
extend the work of Alemneh & Belay, 2023 by
including exposed class in the developed
model for measles to help with understanding
the illness's course, spreading, and assessing
prevention actions. To comprehend the long-
term behavior of a measles model
incorporating vaccination and bacterium class,
global stability analysis is essential. It aids in
figuring out equilibrium, evaluating control
strategies, and determining the dynamics of
disease. It helps with public health actions and
strategies by identifying critical elements

influencing the transmission and control of
disease.
Model Formulation

 N t represents the total population of the
model at time (t), which is split up into six (6)
compartments. Viz: The susceptible
population   ,S t describes those who have not
had the measles but who could get it if they
come into contact with the virus. The measles
vaccination population  V t , or those who
have got the two dose of vaccination, is
essential in lowering vulnerability and halting
the disease's spread. The exposed population
  ,E t describes a category of people who have

contracted the measles but are not yet
contagious; it is a stage in between infection
and sickness. Those who are presently infected
with the measles and have the potential to
transfer the virus to others are considered
members of the infected class  I t . The

recovered populations   ,R t describe people
who have overcome their measles infection,
become immune to other infections, and are
no longer at risk of contracting the illness. The
bacteria class  P t adds complexity to
disease transmission, indicating the presence
of other infectious agents or environmental
factors. Therefore  N t equal to

           S t E t I t V t R t P t     .
Where h , is the vaccination rate from
susceptible individuals and  is the
recruitment rate of humans into the susceptible
class, and q is the fraction of newly recruited
community members who receive
vaccinations. Following a measles infection,
the susceptible class shrank; the forces of
infection are depicted by h PI P    . The
class of persons who have received
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vaccinations declines at a rate of h , when the
rate of waning vaccination for susceptible
individuals rises. The rate at which an exposed
individual is moved from the susceptible class
to the infected class is represented by  . The
rate at which an exposed individual recovers
from the infection is represented by h , and
the rate at which an induced death occurs is
represented by h . The rate of environmental
contamination caused by diseased individuals
is h . The number of people who recover

from infection at the rate of h and those who
receive complete vaccinations at the rate of h
increase the recovered class. A rate h , is
used to represent the natural death rate of the
human population. The rate h , which is
caused by infected individuals coughing and
sneezing into the air and measles virus
droplets landing on different things, creates
the pathogen population. The pathogen decay
rate is considered to be p .

Figure1: Schematic Diagram depicting the measles model (1)
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The measles model's (1) positive invariant
region is a state space where some
epidemiological quantities stay constant or

non-decreasing across time, and where
solutions to differential equations remain non-
negative.
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Positivity of the Solution
Theorem 1: Suppose that the initial data for the model (1) be
     0 0,  0 0,  I 0 0,  S E        0 0,  0 0,  0 0R V P   , then the solutions

         ,  ,  ,  ,  S t E t I t R t V t and  P t of the model with positive initial data will remain
positive for all 0t  .
Proof
Let             1 sup 0 : 0 0,  0 0,  0 0, 0 0,  0 0,  0 0 0t t S E I R V P         and from the
first equation of the model 1, we have

  .h
dS S
dt

      (2)

So that,
      1

1 0
0 exp exp 0.

t

hS t S dx        
 

Hence, it can be shown that          1 1 1 1 10, 0, 0, 0, 0E t I t R t V t P t     . Hence all the
solutions of the model remain positive for all 0t  .

The Invariant Region
Theorem 2: The closed set

  6, , , , , ; .
h

S E I R V P N


 
    

 
(3)

is positively- invariant and attract all the positive solutions of the model
Proof

Adding equations in system (1), yield

.h
dN N
dt

  (4)

It follows from (4), and the Gronwall inequality, that

 0 1 .h ht t

h

N N e e 


 

  

At t the inequality becomes
h

N



 , which shows that the feasible solution of the

system as
h

N



 is the system consist of six possible solutions and the solution model for this

system is uniformly bounded in the subset of 6
 the feasible solution of the region  is

positively invariant and attracting with respect to system  , the invariant region is .
Stability Analysis
Analyzing a system's behavior close to
equilibrium points like endemic or disease-
free equilibria, while assuming small

disturbances is known as local stability
analysis. By evaluating the stability of the
disease-free equilibrium and the endemic
equilibrium, it assists in the prediction of
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short-term trends and outbreaks in certain
populations. The behavior of the system over
its whole state space is taken into account by
global stability analysis, however. Depending

on the original conditions, the system will
eventually settle into the equilibrium, which is
either endemic or disease-free, if the
equilibrium is globally asymptotically stable.

Local and Global Stability of the Disease-free Equilibrium

The measles model (4)'s DFE ,E is provided by
 , 0, 0, , , 0S R V   E

(4)
Where,

   
   

   
   

   
   

1 1
,      

1

h h h h h h h

h h h h h h h h h h h h

h

h h h h h h

q q q q
S R

q q
V

        
             

  
      

 



          
 

       

    


   
The method of next generation operator on system (4) can be used to establish the linear stability

of ,E (Van den Driessche & Watmough, 2002). The transition terms' matrix v and the new
infection terms' matrix F are provided by

   0

0 0 0
0 0 0

h h p hS V S V        
 

  
  
 

F and

 
 

0 0
0 .

0

h h

h h h h h

h p

v
 

    
 

 
      
  

Hence, the basic number for reproduction ( 0R ) is provided as

 1
0 1 2 ,v   R F R R

where,
 

  1
h h

h h h h h h

S V  
     

 


   
R and

 
   2 .p h h h

p h h h h h h

S V   
      

 


   
R

Hence,
         
        0

1
.h h p h h h h h h h h h

p h h h h h h h h h h h h

q q             

             

        


       
R

The number of infected individuals are generated by the infected individuals which is the product
of the infected rate   ,h hS V   while the number of infected individuals generated by the

pathogen is the product of the infected rate   .p hS V   The probability that an exposed
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survives the exposed class and moves to infected class is
 

h

h h


 

, the average duration in P is

1
p

and the probability that an individual survives the infected class and moves to recovered class

is
 

h

h h h h


     

, while is the contribution of I to P , is h .

Lemma 1: The measles system (1) exhibits a locally asymptotically stable disease-free
equilibrium ,E when 0 1R and an unstable equilibrium whenever 0 1 .R
Proof
The measles system's Jacobian matrix at DFE is provided by

 

 
     

 

 

0 0

0 0 0

0 0 0 0
0 0 0
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0 0 0 0

h h h p

h h h h h p

h h h h h

h h h

h h h h h p h

h p

S S

S V S V

J

V V

    

     

    
  

       
 

 

   



 

    
 

    
     
 
 

     
  

E

Clearly we observed that h is one of the eigenvalue of the matrix, while the remaining are
obtained from the
polynomial

          
 

2
2 2 3 1 22

2 4 1 4
2 3 0

1 1
( )

1
h h

h

m m m m
P m m mm

m m

   
    

     
      

   

R

R as,

 

         
  

 

2
1 4 1 4

2
2 3 1 2

2 3 1 2

2 3 2 0

2

1 ( ) ( ) 4
2

1 1
1 1

4 1
.

2

h

h
h

h

h

m m m m

m m m
m m m

m m m
m
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







     

  
    

  




R
R

R

where,
       1 2 3 4,  ,  ,  .h h h h h h h h h hm m m m                    

Hence the DFE is locally asymptotically stable when, 0 1.R
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Theorem 3: The disease-free equilibrium, ,E of the measles model is globally asymptotically
stable within the feasible interval if 0 1R and unstable if 0 1.R
Proof.
Consider the Lyapunov function denoted by

   
1 2 2

.h p p h h p p h p h

p p p

E I P
m m m

          
  

 
  L

whose derivative is
   

1 2 2

h p p h h p p h p h

p p p

E I P
mm m

          
  

 
     L

          

         

 
   

1 2
1 2 2

1 2

0

0 1 .

h p p h h p p h p h
h h h p

p p p

h p p h h h p h p p h p h
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p p p

h p h p
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S V m E E m I I P
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S V I P I
I P

m m

I P I P

I P
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    

  

             
 

  

   

 

 
      

   
   

   

  









L

L

L R

L R

Hence 0L if and only if 0 1R and 0L if and only if 0P I  . Given that every
parameter is non-negative, it can be inferred that ℒ is a Lyapunov function on  . Moreover, the
singleton set  E is the biggest compact invariant set in

             , , , , , : 0S t E t I t R t V t P t       L . Consequently, every solution to the model

with a starting condition in , approaches E as twhenever 0 1R so that E is GAS in
 if 0 1,R according to LaSalle's Invariant Principles (LaSalle, 1968).

Existence of the Endemic Equilibrium Point EEP and Global Stability

Let  , , , , ,S E I R V P      E be the arbitrary endemic equilibrium point of the model 1,

and let h PI P      be the force of infection at steady states, solving the equations in
system 1 at steady states yield,

   
   

1
,h h h h h

h h h h h h

q q
S

     
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

     
   

   
1

,h

h h h h h h

q q
V

   
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      


     

        
        

1
,h h h h h h h

p h h h h h h h h h h h h

q q
E

         


                


             
           

        
        

1
,h h h h h h h

h
p h h h h h h h h h h h h

q q
I

         


                


             
           
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        
        

1
,h h h h h h h

h h
p h h h h h h h h h h h h

q q
P

         
 

                


             
           

h h

h

V IR  


 
 


Evaluating h PI P      , we obtained the quadratic equation (in terms ) as

 2

1 2 0.h       

where,
    

     1

1
1 .h p h h h h h

p h h h h h h h h h

q q      
          

                  
     2 01 .h h h h h           R

The measles model (1) has a unique endemic equilibrium since 2 0  , when 0 1R , by
Descartes rule of sign.
Theorem 4: The measles model (1) endemic equilibrium, E is globally asymptotically stable
within the feasible interval if 0 1R
Proof
Consider the function

   

   

ln ln ln ln

      ln .

h h P

h

h h P

h

V S I PS V E IS S S V V V E E E I I I
S V E E I

V S I P PP P P
I P

  



  



      
      



    
 



        
                  
       

   
   

 

M

whose derivative with respect to t, is
   

   

1 1 1 1

                 1 .  

h h P

h

h h P

h

V S I PS V E IS V E I
S V E E I

V S I P P P
I P

  



  



      



    



        
              
       

   
  

 

    



M =

       

        

    

1 1 1

     1 1                          (5 )

       

h h h h h h

h h P
h h h

h

h h
h h h h h

S Vq V S q S V
S V

V S I PE IS V E
E E I

V S I
E I

         

  
   



 
    

 

    



  

   
                  
   

    
         
   

 
    

M =

   1 .P
h p

h

P P I P
I P


 



 



 
  

 

     1 ,   .          ( 6 )h h P h h h h hq I P S V q V S                           
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Substituting the (6) in (5) and futher simplification

gives

   

2 2 3

       1 1 1 1 2

      

h

h h h h

h p

S S S S S ISE E IS S I S
S S S S S I S E IE

S V P I P V VS V
S V P IP V V

I V

  

    

 

    
   

    

    

 

 

     
              

     
         

                    
         



M =

3 4

      4 .

    

h

h p h

V IV E E I S P SE E I P II S
V I V E IE S P S E IE I P

V P V E E I P I PI V I S
V P V E IE I P P



  

      
 

      

   
   

    

   
          

   
 

      
 

   

2 2 3

       1 1 1 1 2

      

h

h h h h

h p

S S S S S ISE E IS S I S
S S S S S I S E IE

S V P I P V VS V
S V P IP V V

I V

  

    

 

    
   

    

    

 

 

     
              

     
         

                    
         



M =

3 4

      4 .

    

h

h p

V IV E E I S P SE E I P II S
V I V E IE S P S E IE I P

V P V E E I P II V
V P V E IE I P



 

      
 

      

   
 

   

   
          

   
 

     
 

Since the arithmetic mean exceeds the geometric mean the following inequalities hold;

2 0,    3 0,  3 0,

4 0, 4 0,  2 0.

S S S ISE EI V IVE EI
S S S I S E IE V I V E IE
S PSE EI P I V PVE EI P I V V
S P S E IE I P V P V E IE I P V V

      

      

        

        

          

            

Furthermore, since all the model are non-negative, thus 0M , and 1I P
IP



  if S S  ,

E E  , V V  , I I  , R R  , P P  then the largest compact invariant set in  such

that 0M is the singleton set ( E ) then by LaSalle Invariant Principle (LaSalle, 1968) it
implies E , is globally asymptotically stable (GAS) in the interior of  .

Sensitivity Analysis
Sensitivity analysis is a technique for figuring
out how certain parameters affect the spread of
illness. Because of their considerable
influence, it aids in identifying areas that

require intervention efforts. Sensitivity indices
evaluate the proportionate change in a variable
that results from a change in a parameter.
Raising one parameter
 , , , , ,h p h h     is associated with a
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greater chance of an epidemic (positive
indexes), whereas increasing another
parameter  , , , , ,h p h h h      is associated

with a lower burden of measles among human
populations (negative indexes).

Figure 2: Sensitivity indices of the basic reproduction number in relation to the basic
reproduction number's parameter value

Table 1: Parameter Values
Parameter Value Sources

 9875.8775/day James Peter et al, (2022)

h 0.000000000142/day James Peter et al, (2022)

p 0.00000000016/day Assumed

h 0.000045/day James Peter et al, (2022)

h 0.03372/day James Peter et al, (2022)

p 0.071/day Alemneh & Belay, 2023

h 0.2 Raimundo et al, (2007)

h 0.0004694/day Abboubakar et al, (2022)

h 0.042/day Alemneh & Belay, (2023)

h 0.5/day James Peter et al, (2022)

 0.125/day Sowole et al, (2023)

h 0.07143/day Nwankwo, (2021)

h 0.08333/day Nwankwo, (2021)

q 0.85 (Dimensionless) Assumed
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DISCUSSION
Measles mathematical modeling simulation
offers important insights into the dynamic
behavior of the illness within a community.
The disease-free equilibrium point becomes
globally asymptotically stable when 0R is
less than 1, indicating that measles
transmission will eventually cease over time.
The simulation shows a rapid decline in
infected individuals towards zero, ultimately
leading to the eradication of measles from the
population due to high vaccination coverage
(as shown in figure 3). Conversely, the
endemic equilibrium point is globally stable
when 0R greater than 1 is, indicating measles
transmission persists within the population
(figure 4). This occurs when vaccination
coverage is insufficient to prevent sustained
transmission. When 0R is less than 1, the
number of infected individuals declines,
accompanied by an increase in vaccination
coverage. When 0 1R it means that, on
average, each sick person is infecting fewer
people than one other, which slows down the
disease's transmission. When 195  in this
case, that means 0 0.4565R which is less
than 1. This shows that the disease cannot
persist in the population and that, with a
19.5% vaccination rate, the disease's spread is

effectively contained. Going on to
0 1.3870R , this indicates that, on average,

each sick individual is infecting roughly 1.387
more individuals. 0R stays greater than 1
when 0.0125  , signifying a vaccination
rate of 1.25%, is observed. The disease can
persist in this situation, although it can do so
more slowly than it does when 0R is higher.
The 1.25% vaccination rate may not be
enough to completely stop the spread, but it
does help to lower the transmission rate.
Lastly, when 0 4.2753R , it suggests that
the illness spreads quickly and that an infected
person often infects more than four other
people. Even with a vaccination rate of

0.0057  or 0.57%,  0R stays well above
1, suggesting that the disease may still spread
widely. In such a case, reducing the
reproductive population to a reasonable level
may require further steps or a greater
vaccination rate as shown in figure 6. Global
stability of the measles transmission model (1)
is essential for sustainable control measures,
predictability, intervention methods, and
global health security in the context of
epidemiological control. Global health
security is eventually aided by this stability,
which forecasts vaccine affects, optimizes
intervention measures, and lowers outbreak
risks.
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(a) (b)

(c)
Figure 3: Convergence of solution to the disease free equilibrium point of model system (1), for
the exposed (a), infected (b) and pathogen (c) populations with different initial values. Parameter
values used are as provided in Table 1. So that 0 0.0722 1 R
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(a) (b)

(c)
Figure 4: Convergence of solution to the endemic equilibrium points of model system (1), for the
exposed (a), infected (b) and pathogen (c) population with different initial values. Parameter
values used are as provided in Table 1, except 0.0000016p  and 0.00000142h  So that

0 721.51 1 R
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(a) (b)

(c)
Figure 5: A numerical simulation depicting the measles model's phase portrait
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(a) (b)

(c)
Figure 6: A numerical simulation demonstrating the impact of vaccination on      ,  ,  E t I t P t .

CONCLUSION
In conclusion, our global stability analysis of a
measles model that includes exposed and
vaccination classes sheds light on the
dynamics of the disease's spread and the
effectiveness of vaccination programs. We
have determined the main variables impacting
the long-term patterns of measles within a
community by means of an extensive
mathematical investigation. Our results
highlight the critical role that both high
vaccination rates and vaccine effectiveness
play in preventing the spread of the measles.
We have shown that maintaining and attaining
measles elimination requires consistent
immunization campaigns. The sensitivity
analysis we conducted also emphasizes how

crucial it is to comprehend how different
characteristics influence the dynamics of
measles transmission in order to help
policymakers develop effective intervention
strategies. Overall, this study adds to the
expanding corpus of research that aims to
guide public health strategies and policies for
the control and elimination of measles.
Through our analysis, we have been able to
establish a framework for the optimization of
vaccination campaigns and the advancement
of worldwide initiatives aimed at eliminating
or persistently containing measles. But in
order to handle new issues and guarantee the
long-term viability of measles elimination
programs, ongoing research, vaccine outreach,
and surveillance are crucial. This study
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contributes to the ongoing efforts to optimize
vaccination strategies and achieve sustained
measles elimination on a global scale.
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