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Abstract 

This research evaluated the performance of covariance structure in seed rates, row spacing 

and varieties of bread wheat yield. 3
3
 full factorial design method and mixed model methods 

were used for the analysis. The four covariance structure used were compound symmetry 

(CS), huynh-feldt (HF), first order auto-regressive (AR(1)) and heterogeneous first order 

auto-regressive (ARH(1)).  The goodness of fit criteria used to evaluate the performance of 

covariance structures were Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). The data used composed of 270 observations for yield and were divided into 

three factors and three levels. The factors were A, B and C and the levels are 1, 2 and 3 for 

each factor. Analysis shows that the data satisfied all the assumptions. Based on the results in 

this study, it was found that First order auto-regressive (AR(1)) was found to be the best 

covariance structure for the data set. 

Keywords: 3
3
 Factorial Design, Covariance Structures, First Order Auto-regressive, Compound Symmetry,    

Huynh-Feldt and Heterogeneous First Order Auto-regressive. 

 

Introduction 

Factorial design is an important method or 

design to determine the effect of multiple 

variables on a response. Traditionally, 

experiments are designed to determine the 

effect of one variable upon one response. 

Fisher, (1935) Showed that there are 

advantages of combining the study of 

multiple variables in the same factorial 

experiment. Factorial design can reduce 

the number of experiments to be 

performed by studying multiple factors 

simultaneously. Additionally, it can be 

used to find both main effects (from each 

independent factor) and interaction effects 

(when both factors must be used to 

explain the outcome). Factorial design is a 

useful method of designing experiments in 

both laboratory and industrial settings 

(Drafter, 2007). Design of experiment 

(DOE) is a standard technique to identify 

key factors and levels that influence 

system performance and variability. This 

technique is especially useful when there 

is the need to understand the interactions 

and effects of several variables and 

absence of concrete information (Richard, 

1999). Factorial design works well when 

interactions between variables are strong 

and important and where every variable 

contributes significantly (Trochim, 2006). 

It is clear that factorial designs can 

become cumbersome and have too many 
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groups even with only a few factors 

(Williams, et al., 2006). Design of 

experiments is applicable to both physical 

processes and computer simulation 

models. Experimental design is an 

effective tool for maximizing the amount 

of information gained from a study while 

minimizing the amount of data to be 

collected. Factorial designs allow 

estimation of the sensitivity to each factor 

and also the combined effects of two or 

more factors (Box & Draper, 1987). 

As noted by several authors (Algina & 

Oshima, 1994), each analysis has distinct 

advantages and disadvantages, and each 

type of analysis will provide a more 

powerful result under certain conditions 

and when certain statistical assumptions 

are satisfied. Analysis of variance 

procedures can be used to analyze if 

assumption about the observation are 

valid; that is normality, independence and 

homogeneity of variance. 

Analysis of full factorial designs or regular 

fractional factorial design has long been an 

uncharted territory of research. It is 

relatively a systematic target driven 

research that has emerged significantly. 

Factorial designs are widely used in 

experiments involving several factors 

where it is necessary to study the impact of 

the factors or factor combinations on a 

process. Special cases of the general 

factorial designs are widely used in 

scientific endeavors and they form the 

basis for other designs of considerable 

practical value. Recent advances in the 

analysis of cigarettes smokers and the 

maize grain data have galvanized the need 

for techniques to analyze full factorial 

design data. Apart from a very few 

examples, most of the research works have 

surfaced in the scientific body of literature 

in the past decade or so. Numerous 

researchers have addressed the problem 

and have meaningfully contributed to the 

development of the design (Gurbuz, et al., 

2003). 

Recently, Planta, (2006) determined low-

temperature tolerance and genetics 

potential in wheat (Tricitum aestivum) in 

2
3
 factorial design. Fareha, (2013), 

determined the effects of process 

parameters on single fixation of reactive 

printing and crease resistance finishing of 

cotton fabric using 2
3
 factorial designs. 

As pointed out by Garratt, (2001) in the 

discussion of (Lewis, et al., 2001) 

experimentation that is limited to small 

number of noise factors often results in 

only small improvements in product 

performance in laboratory experiments. 

These improvements then tend to be 

masked when products are manufactured 

in full scale production due to variation in 

unexplored noise factors. 

The purpose of this paper is to determine 

the best covariance structure among the 

four in 3
3
 factorial design using seed rates, 

row spacing and varieties of bread wheat 

yield. 

Methodology 

Observation/Experimental Design 

The data used for this study is secondary 

data obtained from the Irrigation Scheme 

Maiduguri. The materials used composed 

of: V1-Local Variety, V2-R23-BB-

PCBWH-98 and V3-TOP‟S NARO-CMB-

PCBWH-1729. Seed Rate: 50kg/ha, 

100kg/ha and 150kg/ha and Row Spacing: 
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5cm, 25cm and 35cm, the design was 

replicated 10 times in a 3
3
 factorial design. 

The trial was conducted at Lake Chad 

Research Institute Experimental Farm 

Maiduguri during the 2011 planting 

season. These consist of making plot sizes 

of 3m x 5m with 1m in-between. The 

experiment was completed same day to 

avoid introducing error due to planting 

same experiment on different days. The 

NPK and urea fertilizer were applied at 

split dosage, half at planting and the other 

half two weeks after germination. Weeding 

was carried out regularly as it was not part 

of the design. 
 

Full Factorial Design 
 

The three-level design is written as a 3
k
 

full factorial design. It means that k factors 

are considered, each at three levels. These 

are (usually) referred to as low, 

intermediate and high levels. The levels 

are numerically expressed as 0, 1 and 2. 

We used the 0, 1, 2 scheme, because the 

three-level designs were proposed to 

model possible curvature in the response 

function and to handle the case of nominal 

factors at 3 levels. A third level for a 

continuous factor facilitates investigation 

of a quadratic relationship between the 

response and each of the factors. 
 

The 3
3
 Design Model 

 

This is a design that consists of three 

factors, each at three levels. It can be 

expressed as 3x3x3=3
3
 design. The model 

for such an experiment is given as follows 

Yijk=

ijkijkjkikkijji ABCBCACCABBA  

     (1)
 

Where each factor is included as a nominal 

factor rather than as a continuous variable. 

Main effect have 2 degree of freedom, 

two-factor interactions have 4 degree of 

freedom and three-factor interactions have 

8 degree of freedom and Yijk is the yield of 

i
th 

level of factor A, j
th 

level of factor B and 

k
th 

level of factor C is the general mean 

independent of treatment effect or 

intercept (overall mean response of all 

observations). 

Ai Effect of i
th

 level of factor A (variety). 

Bj Effect of j
th

 level of factor B (seed rate). 

ABij Interaction effect of  i
th

 level of factor 

A (variety) and j
th

 level of factor B (seed 

rates). 

Ck Effect of k
th

 level of factor C (Row 

spacing). 

ACik= interaction effect of i
th

 level of 

factor A (variety) and k
th

 level of factor C 

(row spacing). BCjk Interaction effect of j
th

 

level of factor B (seed rates) and k
th

 level 

of factor C (row spacing). 

ABCijk  Interaction effect of i
th

 level of 

factor A (variety), j
th

 level of factor B 

(seed rates) and k
th

 level of factor C (row 

spacing). 

ijk Is the random error associated with 

observing yijk and assumed iid   N ),0( 2 . 

 

Hypothesis Testing 

Ho: o  versus Ha: o  

Ho: oAi   versus Ha: oAi   

Ho: oB j   versus Ha: oB j   

Ho: oAB
ji   versus Ha: oAB

ji   

Ho: oCk   versus Ha: oCk   

Ho: oAC
Ki   versus Ha: oAC

ki   
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Ho: oBC
Kj   versus Ha: oBC

kj   

Ho: oABC
Kji   versus Ha: oABC

kji   

Parameters Estimation 

Inferences on specific factor effects 

requires the estimation of the parameters 

of ANOVA models such as blocks, 

treatments, interactions, error and total are 

given below (Robert, et al., 2003); 

Correction Factor (CF) =
2

...

2

... yn
n

y


  (2)
 

where n is the total number of observation 

 

Total Sum of Square (TSS) = 

  
i j k

kji yy
2

...

    (3)

 

Sum of Square A (SSA) = CF
bcr

y
i

i


 2

..

 

       (4)
 

Sum of Square B (SSB) = CF
acr

y
j

j



 2

..

 

       (5)
 

Sum of Square C (SSC) = CF
abr

y
k

k


 2

..

 

       (6)
 

Sum of Square of AB (SSAB) = 

SSBSSACF
cr

y
i j

ij



 2

.

(7)              
 

Sum of Square AC (SSAC) = 

SSCSSACF
br

y
i k

ki


 2

.

(8)
 

Sum of Square BC (SSBC) = 

SSCSSBCF
ar

y
j k

jk



 2

.

(9)
 

Sum of Square ABC (SSABC) =

SSBCSSACSSABSSCSSBSSACF
r

y
i j k

ijk



 2

             (10)
 

Sum of Square Error (SSE) =

SSABCSSBCSSACSSABSSCSSBSSATSS 
 (11). 

Yates’ Algorithm 

Frank Yates created an algorithm to easily 

find the total factorial effects that are 

easily programmable in excel. While the 

algorithm is fairly straightforward, it is 

also quite tedious. Computer methods are 

used almost exclusively for the analysis of 

fractional design. However, Yates‟ 

algorithm is modified for use in the 3
k-1

 

factorial design. The Yates‟ algorithm 

procedure is given in Table 2. 

The treatment combinations are written 

down in standard order; that is, the factors 

are introduced one at a time, each level 

being combined successively with every 

set of factor levels above it in the table. 

(The standard order for a 3
3
 design would 

be 000, 100, 200, 010, 110, 210, 020, 120, 

220, 001 . . .). The Response column 

contains the total of all observations taken 

under the corresponding treatment 

combination. The entries in column (1) are 

computed as follows. The first-third row of 

the response column consists the sums of 

each of the three sets of values. The fourth, 

fifth and sixth row of the response column 

is the sixth minus the fourth observation in 

the same set of three. This operation 

computes the linear component of the 

effect. The seventh, eighth and ninth row 

of the response column is obtained by 

taking the sum of the seventh and ninth 

values minus twice the eighth in the set of 
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three observations. The Effects column is 

determined by converting the treatment 

combinations at the left of the row into 

corresponding effects. That is, 10 represent 

the linear effect of A, AL, and 11 represent 

the ABLXL component of the AB 

interaction. The entries in the Divisor 

column are found from 2
r
3

t
n where r is the 

number of factors in the effect considered, 

t is the number of factors in the experiment 

minus the number of linear terms in this 

effect, and n is the number of replicates. 

For example, BL has the divisor 2
1
 x 3

1
 x 

4= 24. The sums of squares are obtained 

by squaring the element in column (2) and 

dividing by the corresponding entry in the 

Divisor column.  

 

 

 

 

 

Table 1: ANOVA for 3
3
 Factorial Design 

Source of 

Variation 

Degree of 

Freedom 

SS Mean Sum of Square F-Value 

A 

 

B 

 

C 

 

AB 

 

AC 

 

BC 

ABC 

ERROR 

TOTAL 

 

a-1 

 

b-1 

 

c-1 

 

(a-1)(b-1) 

 

(a-1)(c-1) 

 

(b-1)(c-1) 

(a-1)(b-1)(c-1) 

abc(r-1) 

(n-1) or (abcr-1) 

SSA 

 

SSB 

 

SSC 

 

SSAB 

 

   SSAC 

 

SSBC 

SSABC 

SSE 

SST 

 

MSA = 
)(Adf

SSA
 

MSB = 
)(Bdf

SSB
 

MSC = 
)(Cdf

SSC
 

MSAB = 
)(ABdf

SSAB
 

MSAC = 
)(ACdf

SSAC
 

MSBC = 
)(BCdf

SSBC
 

MSABC =
)(ABCdf

SSABC
 

MSE= 
)(ERRORdf

SSE
 

 

MSE

MSA
FA   

MSE

MSB
FB   

MSE

MSC
FC   

MSE

MSAB
FAB   

MSE

MSAC
FAC   

MSE

MSBC
FBC   

 

MSE

MSABC
FABC 

 

 

 

 

 

 

 

 

 

 

Adamu and Danbaba, 2018 



 

87 
 

Table 2: Standard Tables for Yates Algorithm 

Treatment combination Response Column1 Column2 Effects Divisor Sum of Square 

00 

10 

20 

01 

11 

21 

02 

12 

22 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

2
1
x3

1
x4 

2
1
x3

2
x4 

2
1
x3

1
x4 

2
2
x3

0
x4 

2
2
x3

1
x4 

2
1
x3

2
x4 

2
2
x3

1
x4 

 

2
2
x3

2
x4 

 

AL 

AQ 

BL 

ABLXL 

ABQXL 

BQ 

ABLXQ 

 

ABQXQ 

 

 
divisor

column
2

2

 
 

divisor

column
2

2

 
 

divisor

column
2

2

 
 

divisor

column
2

2

 
 

divisor

column
2

2

 
 

divisor

column
2

2

 
 

divisor

column
2

2

 
 

divisor

column
2

2

 

 

Table 3:   ANOVA for Yates‟ Algorithm 

Source of Variation Sum of Square Degree of Freedom Mean Square Fo P-value 

A=AL x AQ  2 

2

SSA
 SSE

SSA

 

 

B=BL x BQ  2 

2

SSB
 SSE

SSB

 

 

AB=ABLxQ + ABQxQ  4 

4

SSAB
 SSE

SSAB

 

 

Error  27 

27

SSE
 

  

Total  35 

35

SST
 

  

 

 

The Sum of Squares column now contains 

all of the required quantities to construct 

an analysis of variance table if both of the 

design factors A and B are quantitative. 

Covariance Structures  

The covariance are the mean value of the 

product of the deviations from their 

respective means, as mention above the 

covariance structures used are First order 

auto-regressive (AR(1)), Compound 

symmetry (CS), Huynh-Feldt (HF), 

Heterogeneous first order auto-regressive 

(ARH(1)). 

First Order-Auto-regressive (AR (1)) 
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This is a first-order autoregressive 

structure with homogenous variances. The 

correlation between any two elements is 

equal to rho for adjacent elements, 
2  for 

elements that are separated by a third, and 

so on.   is constrained so that –1<  <1 

(Chan, 2004).  

 

2 3

2

2

2

3 2

1

1

1

1

  

  


  

  

 
 
 
 
 
   

Compound Symmetry (CS)  

This structure has constant variance and 

constant covariance (Chan, 2004). 

 2

1

1

1

1

  

 




 
 
 
 
 
   

 

Huynh-Feldt (HF) 

This is a "circular" matrix in which the 

covariance between any two elements is 

equal to the average of their variances 

minus a constant. Neither the variances nor 

the covariances are constant (Gurbuz, et 

al., 2003). 

 

 

2 1 31 2 1 4
1

2 2 3 2 4
2

2 3 4
3

2

4

2 2 2

2 2

2

    
   

   
  

 
 



  
   

 
   

 
 

 
 
 
 

 

Heterogenous First Order-Auto-

regressive (ARH (1)) 
 

This is a first-order autoregressive 

structure with heterogeneous variances. 

The correlation between any two elements 

is equal to   for adjacent elements, 
2  

for two elements separated by a third, and 

so on.   is constrained to lie between –1 

and 1 (Verkebe & Molenberghs, 1997). 

 

 

2 2 3

1 1 2 1 3 1 4

2 2

2 2 3 2 4

2

3 3 4

2

4

         

      

   



 
 
 
 
 
  

  

 

Goodness of Fit Criteria 
 

Information criteria are used when 

comparing different models for the same 

data. Akaike‟s information criterion (AIC) 

and Bayesian information criterion (BIC) 

was used in this study to determine the 

most suitable covariance structure for 

model approach. The smaller the goodness 

of fit criterion (AIC, BIC) is better in 

SPSS and MINITAB packages (Littell, et 

al., 1996). The test for goodness of fit 

determines whether a set of observed data 

conforms to a specified probability 

distribution. 

Akaike Information Criterion (AIC) 

Akaike information criterion is a measure 

of the goodness of fit or a test for goodness 

of fit of an estimated statistical model 

(Littell, et al., 1996). The formula for the 

criterion is given as follow: 

AIC = 2l + 2d                   (12) 

Where 
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l is the log likelihood evaluated at the 

parameter estimates or restricted log-

likelihood maximum value and d is 

parameter number. 

  

Bayesian Information Criterion (BIC) 
 

The Bayesian Information Criterion (BIC) 

or Schwarz Bayes Information Criterion 

(SBC) is a criterion for model selection 

among a finite set of models. It is based in 

point of the likelihood function and it is 

closely related to Akaike Information 

Criterion (AIC). In facts, Akaike was so 

impressed with Schwarz‟s Bayesian 

formalism that he developed his own 

Bayesian formalism, now often referred to 

as the ABIC for “Akaike Bayesian 

Information Criterion” (Littell, et al., 

1996). The formula for the BIC is given as 

BIC = -2lnL + kln (n)        (13) 

Where L is the restricted log-likelihood 

maximum value k is the parameter number 

and n is the observation number under the 

assumption that the model errors or 

disturbances are independent and 

identically distributed (iid) according to a 

normal distribution and that the boundary 

condition that the derivative of the log 

likelihood with respect to the time variance 

is zero. 

)ln(.)ˆln(. 2 nknBIC e  
      (14)

  

Where 

2ˆ
e is the error variance and the error 

variance in this case is defined as 

2

1

2 )ˆ(
1

ˆ 



n

i

iie xx
n


     (15)

 

One may point out from probability theory 

that 2ˆ
e

 
is a biased estimator for the true 

variance
2 . Let 2ˆ

e denote the unbiased 

form of approximating the error variance. 

It is defined as 

2

2

1

1
ˆ ˆ( ) .

1

n

e i i

i

x x
n




 



         (16)

 

Additionally, under the assumption of 

normality the following version may be 

more tractable 

BIC = X
2
 + k.ln (n)  (17) 

Note that there is a constant added that 

follows from transition from log-

likelihood to X
2
; however, in using the 

BIC to determine the “best” model the 

constant becomes trivial given any two 

estimated models, the model with the 

lower value of BIC is the one to be 

preferred. The BIC is an increasing 

function of 2

e and an increasing function 

of k. that is, unexplained variation in the 

dependent variable and the numbers of  

Explanatory variables increase the value of 

BIC. Hence, lower BIC implies either 

fewer explanatory variables, more strongly 

than those the Akaike information 

criterion, though it depends on the size of 

n and relative magnitude of n and k. (Bhat 

& Kumar, 2010). 

Tests for Normality   

An assessment of the normality of data is a 

pre-requisite for many statistical tests, as 

normal data is an underlying assumption in 

parametric testing. There are two methods  
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of assessing normality, graphically and 

numerically. 

In this paper graphical method will be used 

as a means of assessing normality. 
 

Software for the Analysis 
 

As stated earlier, the MINITAB version 

16.2 and SPSS latest version software 

were used for the analysis of the research 

and the software were designed to handle 

many statistical analyses. The package 

series were used to test for the best 

covariance structure using some selected 

criteria and many other related statistical 

test in the data set. It is also used to plot 

the graph of the normality and nature of 

the trend. Two goodness of fit were used 

to assess the best covariance structure 

stated earlier. 
 

Results  

Table 4 summarizes the results of yield 

using ANOVA which indicates that seed 

rates and row spacing applied gives a 

better yield than the varieties, all the 

interaction produces a better yield as such 

irrigation scheme which improved modern 

yield in the stated conditions above gives 

more yield and save cost, provided the 

assumption are made and satisfied. 

Table 5 shows the summary of selected 

covariance structures using goodness of fit 

criterion as an indicator of finding the best 

covariance structure, the structure which 

least criterion is the best. Therefore, table 

5 indicates AR (1) as the best covariance 

structure, followed by ARH (1) and HF. 

This suggests that modern improved seed 

rates and varieties gives more yield or 

produces more output. In general, the 

result shows that there is significant 

improvement using new seed rates. 

Table 4 shows that two factors are 

significant. That is factor A and factor C 

are significant, Fcal at df (2, 243) is greater 

than Ftab at df (2, 243), 05.0   and P-

value is less than 0.05 at both factor A and 

C. But P-values is greater than 0.05 in 

factor B which indicates that is not 

significant, at df (2, 243), 05.0 , also 

P-values is less than 0.05 in all the 

interactions, which shows that there are 

significant different between the 

interactions A*B, A*C, B*C at df (4, 243), 

05.0  and A*B*C at df (8, 243), 

05.0 . Hence, it can be concluded that 

the yield of seed rates, row spacing and 

varieties have different effects at different 

levels which indicates that there is 

significant different in yield between 

different factors, that is if P-values are less 

than 0.05 it shows that there is significant 

different in the yield. 
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Multilevel Factorial Design 

Table 4: ANOVA for Yield, Using Adjusted SS for Test 

SOURCE DF Seq SS Adj SS Adj MS F P 

SEED RATES 2 377931 377931 188966 5.76 0.004 

VARIETIES 2 31517 31517 15759 0.48 0.619 

ROW SPACING 2 204013 204013 102006 3.11 0.047 

SEED RATES *VARIETIES 4 644273 644273 161068 4.91 0.001 

SEED RATES*ROW SPACING 4 362224 362224 90556 2.76 0.029 

VARIETIES*ROW SPACING 4 685262 685262 171315 5.22 0.000 

SEED RATES*VARIETIES*ROW 

SPACING 8 758717 758717 94840 2.89 0.004 

Error 243 7978319 7978319 32833     

Total 269 1.1E+07 1.1E+07       

S = 181.198   R-Sq = 27.75%   R-Sq(adj) = 20.02% 

Table 5: Criteria Results for Comparing Covariance Structures 

COVARIANCE STRUCTURES 

Information criteria CS HF AR (1) ARH (1) 

AIC 3553000 3546000 3279000 3546000 

BIC 3921000 3859000 3295000 3859000 
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Figure 1: Normal Probability 
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Figure 1 indicates that the distribution of residuals is normal, because, from the figure you 

can see that the residuals resemble a straight line therefore the normality assumption hold. 

 

 

 

 

 

 

 

Figure 2: Histogram 

Figure 2 show that the plots are independence since both of them do not reveal any pattern. 

Therefore, the independence assumption is satisfied. 

 

 

Yijk=

ijkijkjkikkijji ABCBCACCABBA  

         (18)  
 

In addition, R
2
 is moderately ok which 

explained the variability of the data. 

Table 5 shows the information criteria for 

different covariance structure in mixed 

model approach. According to AIC and 

BIC fitting criteria, First Order Auto-

regressive (AR (1)) has the best covariance 

structure (it has the smaller value on both 

AIC and BIC), then followed by Huynh-

Feldt (HF) and Heterogeneous first-order 

Auto-regressive ARH(1). (AR (1)) is the 

best covariance structure among the four 

selected structures and hence is the most 

fitted and accepted in this work and the 

work related to this type. 
 

Discussion 
 

In this paper, the set of data used was 

tested for adequacy and found to satisfy 

the assumption of normality, independence 

and homogeneity. 3
3
 multilevel full 

factorial design analysis shows that two 

factors A and C are significance while the 

other factor B is not significance, because 

the P-values of factors A and C are less 

than 0.05 while the P-values of factor B is 

greater than 0.05. Null hypothesis 

indicates that the hypothesis should be 

rejected for factors A and C and conclude 

that there is significance difference 

between the yields. Coefficient of 

determination (R
2
) also indicates that the 
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analysis is satisfied, because R
2 

explained 

the variability of the data. 

According to information criteria AIC and 

BIC, First Order Auto-regressive (AR(1)) 

was the best covariance structure (since it 

is the one that provide the smaller value on 

both the AIC and BIC) then followed by 

Huynh-feldt (HF) and Heterogeneous first 

order autoregressive ARH (1). (AR(1)) 

gave information about bread wheat yield 

in seed rates, row spacing and varieties 

Conclusion 

This paper is concerned with determining 

the best covariance structure in seed rates, 

row spacing and varieties (V1, V2 and V3) 

of the bread wheat yield. Full factorial 

design method allow a large number of 

variables to be investigated in a compact 

trial, enable outliers in the data to be 

identified and provide detailed process 

knowledge. R
2
(adj) penalizes the statistic 

as extra variables in the model. With 

regard to covariance structures, first order 

auto-regressive (AR(1)) was found to be 

the best covariance structure defining yield 

of bread wheat as a function of seed rates, 

row spacing and varieties. 

The model and different covariance 

structures studied here shows that there are 

indeed tangible benefits gained. These 

benefits can result in the better yield at the 

same time contribute to knowledge 
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