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ABSTRACT

Delay differential equation is type functional differential equations that arise in numerous areas
of applied sciences. Various forms of these equations play a vital role in mathematical modelling
of real-life phenomena.Different techniques have been use to obtain solutions of various types of
delay differential equations (DDEs). However, many situations arising in the theory of DDEs in
which the solution of certain types of nonlinear DDEs cannot be explicitly obtained. In such a
case, having a suitable representation for the solutions, some important properties such as
oscillation and stability of these equations can be obtained. Therefore, in this work, a Natural
transform and convolution theorem are used to derive a closed form-formula for the
representation of solution for nonlinear systems of DDEs. The derived result is also used to study
the exponential stability for the solution of nonlinear systems of DDEs. Hence, the approach can
also be applied to study the stability analysis of many types of nonlinear problems.

Keywords: Natural transform, Convolution Theorem, Nonlinear System of DDE:s.

INTRODUCTION 2, <t 0
In a qualitative study of DDEs, many " Trerso
situations arising in which certain types of  «'= Blor)  (k-l)esi<krhen
such equations cannot be explicitly solved. I+ Bi+ e
However, some features (oscillation, stability, B (1-(k-1)7)
etc) for the solution of those equations can be T

determined from it representation. Therefore, o ‘ '
numerous  researchers used  different ~ Where is time independent variable, is a

techniques to obtain a good representation of  constant delay term, is X  matrix, &

solutions to different types of DDEs, more  and are respectively zero and identity
especially the systems of such equations.

Khusainove and Shuklin (2003) applied the
method of step to construct the so-called
delayed matrix exponential.

matrices. The purpose of this matrix
construction is to derive the representation of
solutions of linear DDEs with a single
constant delay. Their result can be recalled as
follows:
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Theorem 1.1 [1] Suppose > Oandlet be

an X  matrix, (- ,0], )and
[0, ) - be a given function. Then

the solution of the Cauchy problem consisting

of the equation

y'(t) = By(t—r)+ f(t),t >0,

with initial condition

= 0O [-.0 I,
)

has the form,

is defined in
Equation (1). The generalisation of this result

for any = — and

for constants delays was given Michal
in 2012. This result can also be recalled as

Theorem 1.2 [2] Let0 < 4, ,,...,

for , such that : = [ 1,..., 1,

TR x pairwise
permutable matrices, ([— .01, ),
and [0, ) - be a given function.

Then the solution of the Cauchy problem
consisting of the equation

v (t)=By(t—1)+By(t—5,)+..+By(t—7,)+f(t) (3)

with initial condition in Equation (2) has the

form

4 —<t<0

4)

w0~ r0fu-9 Sty

[r(-s)rds
where

9(1) te[-7,0) )

YTl t¢[-7,0)
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0 is N—dimentional vector of zeros
andY, ()= %P5 i< the multiple delay

11572 50Ty

matrix exponential define as

%] 1<z,
Y, (t+7) £ <1<0
Y, (47 )+ (k—1)z <t<kz keN

BB Bl _
Gty

1_[)?71 (5% ( 6)

ByBy,B,(1-7, -1
For =23,.., and YH(I)— il 1)

Michal and Frantisek used unilateral Laplace
transform and derived the representation of
solutions for linear = nonhomogeneous
differential equations with any finite number
of constants delays and pairwise permutable

X  matrices which another extension of
Khusainove and Shuklin work. They later
consider the following equation,

v (t)=Ay(t)By(t—7,)+B,y(t—1,)+...

(7
+Bny(t—z'n)+f(t),

with Equation (2) as initial condition . To
obtain the closed-form solution of Equation (7)
Michal and Frantisek first transformed the
equation to linear DDEs with multiple delays
in which the delay independent

( ) = 0. By this transformation, they used
their  derived result to obtain the
representation of the solution of Equation (7).
However, this result is not used to determine
any solution properties of the corresponding
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nonlinear equation, but rather it was only
meant for practical calculation of linear
problems of the form of Equation (7).

Therefore, in this work, the Natural transform
is applied to derive another representation of
Equation (7). The idea for choosing Natural
transform over Laplace transform here is
because the Natural transform generalised
both the theory of Laplace and Sumudu
transforms, and also the application of Natural
Transform to delay differential equations is
very limited. In addition, our derived result is
not only meant for practical calculation, but it
can be also used to study the exponential
stability of solution for the following
nonlinear systems of DDEs.

y'(t)=Ay(t)Bly(t—T1)+...+Bny(t—rn)+(8)
F(y(6),y(t=7)ss(t-7,),

with Equation (2) as initial condition. The
sufficient conditions for the exponential
stability of the trivial solution of Equation (8)
are derived using the stability criteria provide
by Medved and Michal in 2012. In this work
they consider different form of nonlinearity
based on the following definition.
Defifinition 1.1 Let ;, ,,..., be
matrices and : [0, ) be a given function.
Suppose 0 < 4, o,..., such that

= {1 2,..., } for and

([— ,0], ). If a function y(t)

C(—-T10), ) n C(0, ), ) (Only the
right-hand derivative to be considered at
0) solves Equation (3) and also satisfifies the
initial condition in Equation (2), then y(t) is a
solution of the Cauchy problem defined in
Equations (2) and (3).

X

MATERIALS AND METHODS

The definition and some important properties
of Natural transform for further use in this
research are rendered here. First, recall the
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defifinition of Heaviside unit step function
() given by

I, ¢=1

t<0

I, t>7
H (t)=H(t—71)=
enicar{ 5
For 0 < , then the Natural transform
( ) of the function () () = ()
defined on ™ can be defined over a set

I

A :{y(t):Ele'],z'2 20‘y(t)‘<Me;,te(—l)/ x[0,0),jeZ"

|

As in the given integral:

N*[y(t)]zY*(s,u)zje’”y(ut)dt;s,ue[O,oo).(9)
0

Lemma 2.1 Let F(s,u) and G(s,u) be the

Natural transform of the functions ()

, () > 0. Then for > 0, the following

properties of Natural transform hold (see

Fethi el al.)

I.N* [af(t)+bg(t)} =aN" [f(t)]+bN+ [g(t)],a,beR
2N f(t)] =§N+ [f(t)]—@,
3N~ {uF(s,u)G(s,u)} :(f*g)t,

st
4N

=H(t-1),7>0,

S (t z‘)r>
5.N_{Su"_lHl(s,u)HZ(s,u)...Hn(s,u)}
=(h*h*..%h,),n>3,

where is a convolution operator, N~ denote
the inverse of N*, H (s,u),...H, (s,u) are

respectively the Natural transform of and
h,hy,.....h, >0 such that

(hy . %h) = jh (@Y (a)-h, (t—a )da.

Definition2.1 Let such that |
1 and () be Heaviside unit step function,
then for simplicity define a function

=



Lemma 2.2 Let O and T > O then

N gt | €L Lo g5

s
where
P :{ 1, a23andy :{ I, a>2
“ 0 a<3 “ 0 a<2
Proof

Using an induction method, for a = 1 the
result follows from number 4 of Lemma 2.1.
Suppose the statement is true for a = £, then it
is suffices to show the statement also holds
for o = k + 1. Now, from number 3 of Lemma
2.1 we have

k+1
N~ {sut e’ 1
K
—st \F —sT
=N dul| su*" e’ &
K K
P k-1
=J‘(a(kk11;' H(a-kt)H (t—a-17)da
: _
““(a- kz')kfl
= WH(t— (k+ 1)T>d€l
kt °

(f—(kk+!1)f)k Y

=1H.t

(t_ (k+ I)T) (k+1)r

This completes the proof of the Lemma.
Therefore, based on the Definition 2.1 the
inverse Natural transform of n multiple of
Heaviside  functions was  successfully
established. The generalization of this result is
given in the following Lemma 2.3.
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Lemma 2.3 Let and 7 > 0 then

N~ {s* uy("_l)Hs"u“""
i=1 s
(10)
= :‘r,tar o, T ’nEN’
161542 £2500 ntn

where

I, a=3 d , a=2
Xn = Vo =

0 a<3 0 a<?2
Proof

Also by induction method with respect to
Now, for = 1 the result is obtained from
Lemma 2.2. Suppose the result is also true for
. Let left-hand side of Equation (10) be
denoted by  then



¢ a,, -1
—a-— ap+lTp+1

(. -1)!

H (a - zp: al.z'l.]
i=1

xH (t —a-a,,T )da

p+l

P
Za -1
T Tpi (Cl Zatrz]
1

J‘ 1
P

»

Zapfi Z a; - !
i=1
p+l 1
(t A=A, Tha )

i=1
(,.-1)!

p

p+l

H [t— Z ar,
i=1

T,.j
p+l Z‘a"l
G
i=1

X

Ja.

Now, the substitution of
p+l

a= Zp:al.rl. +§[t —Zal.
i=l i=1

Yields

L

Pl T

Slas S
[iaqul—w

jB(ial,aMJ,
i=1

.) is the Eula beta function. By
this function wusing gamma

(,)= re ) )thIS leads to

r¢+
Pl
Za,fl
r,.j" H(t— Tij
_ T Ht
- Ialfr Ay Ty Ap Ty *

o)

The the proof is now completed.

=1

where B(.,
rewritting

functions

G

p+l

p+l

Z a;
i=1

p+l

zar
i=1
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Lemma 2.4 Suppose the assumptions of
Lemma 2.3 are satisfied. If 4, o, .., are

X matrices and is an N—dimentional
vector then

n
N~ Slnuh("*l)l—[s”u“wl Bie

i=l1

[HBO{ J 0‘171 ¥ Ty

Proof
Consider the following equation

*ST al

Beu

l y n— 1 Hsn a; )
ot \%
n u n
_ —1 e
v ewerpe [ o)
i=1 S i=1
n
_ a; H.t
- | |Br « a7,,a,T T,
i=1

The proof is now completed.
2.1 Derivation of closed-form formula

To obtain the main result of this work it is
necessary to get the sufficient condition for
the solution () of Equation (3) to be an
element of set 4. In such case, there is need to
recall the result of multi-delayed matrix

B,,B,,..B, (l—‘r )

exponential e ' " obtained in Medved

2 50T,

and Michal work as given in the following
Lemma 2.5.

Lemma 2.5 [4] Let >0, ¢, 5, ..., , and
B, B,,...n be as defined in Theorem 1.2. If
||Bl.|| <ae“" foreach =12, .., then



(aq+ay+..4a, )t

<e ,tER.

Lemma 2.6 Suppose all the assumptions of
Theorem 1.2 are satisfified and let the
function  be an element of set . Then the
solution () of Equations (2) and (3) is also
in A.

Proof
|
Let 0< , 4 such that | ()|< t for
every (—1) x[0,00), * Let
11 2reen such that || || < then
from Lemma 2.5, || ()| < for any for
= .LetQ=[rl1a8§| ()] for =0, then
we have

[y (1)] < Qe +2Q||Bi||

‘ el

xj s + MI "4 ds
0

(12)
o

1
a[a+—j\t\
c
—e P
a

+

For a very large value of ; then

a| a+— | 1

Mcl [ CIJH < kecM
a

where , = ( + 1) are constants. Hence
() isinset

So, Theorem 2.1 below gave the closed-form
formula for the representation of the solution
of Equations (2) and (3) and proved using the
essential notions of NT.

Theorem 2.1 Let 4, -, .., be pairwise
permutable X% that is, B;B; = B;B; for
every , =12, .., and 1, 2., >
0O such that
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={1 2 }.If [0, 1,

) and
belongs to set A (there exist some constants

M,c; >0 such that | ()| <

[

1 for all
(—=1) %[0, c0), Then the solution of
the Cauchy problem consists of Equations (2)
and (3) can be expressed in the following
form

+

—-<t<0

o).
(13)

t>0

A0 00 3H

w(a_fl.)cmjx(m) @)

(14)

21 0y
a

aj ala,!..a,!
290 ULy

Proof

By Lemma 2.6 the solution, ()
therefore, the Natural transform can be
applied to study Equation (3). Hence, from 2
of Lemma 2.1 the following are obtained

v D)= 20 S ey - e[ ()
¢540+;B[?[ o(ut- r)dt+Je "y fut— r)z’t]+F ()
_2(0)

+ZB

u i=1

PO S e 5 TN D 6]

[f (w5 i+ e 5'!6 ww}F()

= (2 Sae T v b 2 Sax Tt 1k ()

where  is defined in Equation (5). Suppose



that, the fraction — is large enough such that

| -

induced norm. Then by the theory of matrices

_” <- , where ||.|| is a fixed

=1

-1 is non-singular. Hence

the following holds

=S7;

SuBe

I -

S

i=l1

-1
=S7;

uBe *

=N [y(t)]=|1- Z

{ [ +ZBN (-7, F su)]ﬂ

Therefore, the solution () can be expressed
as follows

y(1)=X,+Y BX,+X,,
j=1
where
u| & L uB,e_iT »(0)
X, =N = '
0 s ; ,Z:I: s u
Tl Y ool
x,= N (Y] 5o S NMH)JJ
S| a=0| i=l S
X =N S A s
) S| a=0| i=l

So, by using multinomial Theorem we obtain
the following equation
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e gD :|

(15)

Now, apply 5 of Lemma 2.1 on Equation (15)

to get
B0

@] @) sy 20

XOZ
=1

*N | kg e HBS” i 1— (I

Applying Lemma 2.4 on Equation (16) to have
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NS > a
3 @ ‘ [a_;afr"jﬂ 4= ; %‘ (a],az,...,a j[‘//(t_ g )] .
X, :z ( o Jj’i |a = n
a‘:a n /o aj .

{r“ aQ,a,, (iai_lj! 1) st 20 (20)
i=1 . .
x[ﬁB,a,J(p(O)%H(a—Zﬂ:a,qu(t—a) da H(t)*t—n'N* gy 7o) ﬁBls"u“"]e u
i=1 ! P 0 | -
© a )
= B 0)H| t —
;a:a[al Qs @ j[l;l ‘ }0( ) ( Zarj

. e L e Therefore, using Equation (17) and 5 of
t"[t—;amj " [t—za.-f,-] " (t—za,-f,-j Lemma 2.1 Equation (20) becomes

t n
” (r+(n-1)) ” a+n _ a a;
t[t—za,r,) [I—ZaiT,J X _,([ Zz [al,az,...,a”j (EIB" }(
+ + i ;T <t

T ) (atn) (21)
—ga_a [ZQQJ[HBJMO) a7 (-1 (t=a) ™" (t—a—ilairij
L > — y(t—z,)da.

s (n—m)!(a+m)!

Now, forevery =1,2,..., the integral in

Equation (21) can be compressed to , .when
Also, by using multinomial Theorem < and lead to
L ( — )-> ( — ). Andfromthe
X, =N % i[Z uB,-Se - J N [k 5 )] (18) other hand, i.e. for > , this can be
L extended to .

) L p @ Hence,
2L (e )” {HJ v vt-o)
! Jaf=a AT - X, = _[X(t—a)go(a—rj)da,j =1,2,...n.

0

Now by 3 of Lemma 2.1 Equation (18) leads  Lastly, by replecing *[ ( — )] with
to (, ) in Equation (18) and following the
same process then  can be derived as

0 o t a n
Xj= ylt-1,; * X = B
; |aZ::a [al’aza"-aan][ ( )J / -([ Z (al,ap...,an] [1:1[ ' }(
1230 (19) | 2 s
N qu’s 1 Zil sty [ILIB,.S"M”"1 i} . , (-1)"(t—a)™ (r—a— Zn:airl) (22)
S Ss i=1 N i=1
d
mzz;) (n—m)Y(a+m)! f(a)da
Now, apply 5 of Lemma 2.1 on the left-hand t
side of Equation (19) to get = _[X(t—a)f(a )da.
0

And this completes the proof.
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Corollary 2.1 Suppose , , 1, 2,... ,and
be define in the manner as in Theorem 3.1.
Let be pairwise permutable

1y 21
X matrices, then the solution of the
Equations (7) and (2) has the form
o), —<¢<0
. (23)
LU IR DY RC
e[ X,(1-)/(a)ds
where
a
X,(t)=e"
NOR
; ;T <t
. n o

for all such that l}i =Be ",i=1,2,.n.

Proof
By setting () = ( ) then a new problem
is obtained in  given by

v(£)=Biv(t—1,)+Bav(t—1,)+ ...
+Bav(t—7,)+ f(t),t20
v(t)=e"p(t)=p(t),—T<1<0,

(25)

where }(t) =¢ " for every t > 0. By Theorem

2.1 the solution to Equation (25) can be given
as

ol0). (26)

5(([)(})(0)-#223,1&’(!—@

xé)(a—q)da+J;‘j((t—a)f(a)da,
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Where

n

118
i=1

a;
[}

Now, by comming back to y and using

(}(0) = ¢(0)implies that

e™ =Z}i &(tfa)w(tffj) =B & )~(( t—d (;( t-7)

e X(t-a) f(a) =" X(1—a) £ a,

and X, (t)=eAt)N( (#). Hence the result

follows immediately.

RESULTS

This section is designed to derive sufficient
conditions that guarantee the exponential
stability of the solution for a different form of
nonlinear DDEs with multiple numbers of
constant delays. Thus, it is important to recall
the following definition.

Definition 3.1 Let be a
given function and , 4, o, .., be
pairwise X permutable matrices. Suppose

ZOWlth [ 11 21 ey ]

. Then the solution [— , ) -

X ... X

—

1
and

21

of equation
y' (t) = Ay (t)B, (t -1, )
F(y(t),y(t —rl),...

n (t -7, )+ (27)
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satisfies Equation (2) is said to be
exponentially stable if there are some positive

constants 4, », and which depend on
v 1y 2y ) and ” ”ldeﬁne by
= max +max |
Il = max il Olf+max || O
Such that
| = =177 =0
Where () is any solution of Equation (27)

which satisfies the initial condition

()= (), - = =0
with  tand] O Ol <
Lemma 3.1 Let 0= 41, 2., and
1, 2, b e pairwise permutable X
matrices. If || || < for =1,2,..., ,
where such that _, < , then
| )] < ,for0<
Proof
)t Zar 11[8,’"
-l ¥ |3 - = J, 1 (28)
i wn powr (n m) (a+m)a a,l.a),! J
. (7 'a't [ Zar]
= z +m)Vala) ! HB‘Q‘HHB;HHB'?H
Z e (n—-m)a+m)ala,). a,
L (=)t [ Zar] . .
< iz{%g m:o(’l m) (a+m)‘a’a' ) (&9“) ....(é‘ne ')

Siﬁcé n, m > 0, therefore the following hold

HOEE i[zmj<

81 ‘(“2
. = n m 'a la,l.a,!
S s
=

@).a2, .- An20

“¢(29)

at

£.6,..,) €.

5 z [Zar.—tzj (

S (n—m)la\a,). a,!

<

Z azst
. 1
Since  _, = is convergent power series
implies that
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[ , 30)
[x@<] X Zl—myatatat | <
; T <t
where 7 =max|r,], a constant
‘ ar—(ar)z p | ;
= ( ) (£.¢,..€,)

‘ alay)..a,! = (n—m)!

and o = Zai such that =
i=1
Theorem 3.1
Let |, 1, 2, ., be pairwise permutable
x matrices, 1, 2,.., =0 with =
[ 1, 2.~ |, where = 0. Suppose the
eigenvalues 1, ,,.., of amatrix posses
the property that 1< )< .. =<
<— =<0.Let 1, 1, 1 such
that || || < for =12,..., . If =
_ and ()= (|l |I) then the solution

of the system

v (t)=Ay()B (t—-7,)+..+B,(1—-7,)+
is exponentially stable.

Proof

Since Equation (31) satisfies Equation (2)
then according to Corollary 2.1 its solution
has the following form

y(t) ZB IX t a
+.(i;XA(t—a)f(y(a))da,

—e" X ().

property of eigenvalues of

f(y(0))BD

a r)da

where X, (¢) From the given

implies that there

are some positive constants ,  such that
|| || < for all =0 . Also since
()= d ()ID therefore for all > 0

there exists a positive  such that if || || <

implies that|| ( )| > || ||. Hence, for

0 and || ( )]l is sufficiently small for

=
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[O, ] then by applying these two estimations
together with Lemma 3.1 yield

||y (t)” < Ke(afh)’gp(O

ek 3 e
J=1 0

, (32)
x”go(a—rj)uda+Kje(a_h)(’_a) ¥ a)”da,
0
where = . Assume that|| ( )| =< , for
[0, ] and =0 and let ()=

C=J ()|l then define a function
W(0.6)= Ko(0)+ K51 [} &l o) a3

Hence, the following inequality follows from
Equations (32) and (33).

u(t)SM((o,(p')+j;u (a Wa.

(34)

By applying Gronwalls inequality, we
obtained an estimated solution of Equation
(31) as

Hy H— u( )SM((o,(ov)e(Kmehy. (35)
Now, for = 0, if || ||; I is sufficiently
smalland =<-—then 0 < ( : ) - for

= - - > 0. Therefore, the

solution of Equation (31) is exponentially
stable.
Theorem 3.2 Suppose the assumptions of

Theorem 3.1 are satisfied. Let
Coozee D= AL IHI 2l o+ 102D
that is for all > O there exists d > 0 such
that if || [[Il <ll,... [ 1l < implies

I Co o D= AE T+ all+ .+

|| 11]). Then the solution of Equation (27) is
exponentially stable.

Proof

Also, Equation (27) satisfies Equation (2)
then according to Corollary 2.1 its solution
has the form
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(1)

+JXA (t—a) f(3 %, 150 v,) da,
0

From the given property of eigenvalues of
implies that there are some positive constants
, >0 such that || || < . This

assumption and Lemma 2.1 lead to the
definition of the following function

u(t)=e(h°’ H<k(0 (0)

K3 e fola,)

da+KPj (ie) Z”v

Since, ()=
is obvious that if 0 <

DIl I ( <

= 0 then

(36)

+KP j

)a
(= )= (=)= git

AP O C =
for [0, ] and

()<M++KPI da+KPJ~ -y - 7 Yia ,(37)

where  is defined in Equation (33). Let
{ ) }1 0— and = (=) 5
= 1,2..., then define a function

w= b+bj da+2b] 7 )da>u(r).(38)

Suppose for a convineint choose of () and

= [ ] then the function is defined
in such way that ( ) < 2 . Thus, the

given inequality holds
= a)(t)+2zn:b,.w <22b0) =5 39)

+Zici—

(t)"Sbe(a 5 soit (), and

are choose such that b < ¢ and for a small ,
the Equation (27) has stable solution.

Theorem 3.3 Suppose the assumptions of
Theorem 3.1 are also satisfied. Let
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0 1 2
4 7 14
"+

y
Al

f(y’vl’VZ""’vn)ZO(

that is for all > O there exists > 0 such
that if yeens implies
I evievsseev < P Il ol e ).
Then, the solution of Equation (27) is

exponentially stable.

Proof

Also, Equation (27) satisfies Equation (2)
then according to Corollary 2.1 its solution
has the form

(0)=X,(Dp(0)+Y B I

Jj=1

+JXA(t—a) F (v m,en ) da
0

(- el ar) do

Now, from the given property of eigenvalues
of  implies that there are some positive
constants , > O such that || || = .
This assumption together with Lemma 3.1
yield

u(t) =" |y (1)) < ko

0)+ K38, e
J=1 0

0 u r
¥ +;"v,. (a)" }da.

Since, ()= (=) ()| therefore the
following functions can be obtained as

(40)

x ||(p(a -1, )" da+ KPj. el {
0

()] =€ a) =l (a-=)
:u(a—ri)e(mh)(ay 77"7). Now, it is obvious
that if 0 < |l (DI C = DI C =
Dl Il ¢ = DIl < for some [0, 1
and ¢ > 0 then

u(t)sbj‘no(a)u(a)yoda+Zn:j‘n[(a)u (a—riy‘da,(41)
where 0 -

n (1) = kpe" N7 gy = kel )
For =1..., , = { .1 II} and

is defined in Equation (33).
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Let the rihgt-hand side of Equation (41) be w,
therefore by nondegreasing nature of the

sequence { 0, 1... } and the validity of

the inequality Equation (39), then the
following inequality also hold.
o (1) <m0’ +3 2" 1, (t)eo (1)

. “2)
<7, (t)o(t),0(0)=b

i=0
Let =2 () and = , for =
1,2,..., . Then Equation (42) can be
deduced to the following form
o (1)< by (0(1))+ 6, (0(1)) + )

11,0, (0(1)),0(0)=0.
Integrating both side of Equation (43) lead to
<c+z_[u da G(1). (44)
i=l ¢
Hence, the result follows from Manuel

Pinto’S inequality (1990) in such a case the
following can be obtained

ZIy a)da W )

i=l ¢

w,(c..)=W,(c, 2)+"}“n—1 ” <W, (¢, )+

n n - by " "
c dZ %< dZ
e | el
(45)
t < dZ i dZ

=W, (c,,)= j 4,(a)da SJ», W (z) CI, w,(2)

2 % dz S dz
< < =

;(C-!.) W,(Z) ; J.) Wl(z)

Oviously, ( (0)) =
sufficiently small then

| = ii:,u,» (a)da < Z('[) Wji(zz) <00
CON <11 for all

() =0. So for

Thus, = 0 and

hence
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u(t)<w()<G(t)<w(|u])=C <.
Now, If < then]|| || <
Hy(t)” <Ce " 1> 0.

Example: Consider the population dynamics
model given in the following equation

yi(t):luyl(t)+a1y1(t_‘[)_;/lyl(t)yl(t)
=SV (t)y1 (Z_T)_Syl(t) y2(t—T)
y; (t):_/Byz(t)+a2y2(t_7)+72y1(t) yz(t)

=5y, (t) 3, (t=7) =5, (2) », (1 -7),
Where 1, 5, 1, 2, >0and0< <

<

(46)

- 0
So it obvious that 4= H such that
0 -p
a 0
aZ

the eigenvalues— <— <0, B= (O

CONCLUSION

In this work, using convolution Theorem, the
inverse Natural transform for an n th-multiple
of Heaviside unit step functions are derived.
Based on this result, a closed-form formula
for the representation of the solution of
nonlinear systems of DDEs with single and
multiple numbers of constant delays is
successfully established. The closed-form
representation formulation is used to develop
a criterion for the exponential stability of the
solution of difffferent form of nonlinear
systems of DDEs.
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