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ABSTRACT

Delay differential equation is type functional differential equations that arise in numerous areas
of applied sciences. Various forms of these equations play a vital role in mathematical modelling
of real-life phenomena.Different techniques have been use to obtain solutions of various types of
delay differential equations (DDEs). However, many situations arising in the theory of DDEs in
which the solution of certain types of nonlinear DDEs cannot be explicitly obtained. In such a
case, having a suitable representation for the solutions, some important properties such as
oscillation and stability of these equations can be obtained. Therefore, in this work, a Natural
transform and convolution theorem are used to derive a closed form-formula for the
representation of solution for nonlinear systems of DDEs. The derived result is also used to study
the exponential stability for the solution of nonlinear systems of DDEs. Hence, the approach can
also be applied to study the stability analysis of many types of nonlinear problems.

Keywords: Natural transform, Convolution Theorem, Nonlinear System of DDEs.

INTRODUCTION

In a qualitative study of DDEs, many
situations arising in which certain types of
such equations cannot be explicitly solved.
However, some features (oscillation, stability,
etc) for the solution of those equations can be
determined from it representation. Therefore,
numerous researchers used different
techniques to obtain a good representation of
solutions to different types of DDEs, more
especially the systems of such equations.
Khusainove and Shuklin (2003) applied the
method of step to construct the so-called
delayed matrix exponential.
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Where � is time independent variable, � is a
constant delay term, � is � × � matrix, 
and � are respectively zero and identity
matrices. The purpose of this matrix
construction is to derive the representation of
solutions of linear DDEs with a single
constant delay. Their result can be recalled as
follows:
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Theorem 1.1 [1] Suppose � > 0 and let � be
an � × � matrix, � ∈ �1 ([ − �, 0], ℝ� ) and
� : [0, ∞) → ℝ� be a given function. Then
the solution of the Cauchy problem consisting
of the equation

     ' , 0,y t By t f t t   
with initial condition

�(�) = �(�), � ∈ [ − �, 0 ],
(2)

has the form,
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for any � ≥ − � and ��
�� is defined in

Equation (1). The generalisation of this result
for � ∈ ℕ constants delays was given Michal
in 2012. This result can also be recalled as

Theorem 1.2 [2] Let 0 < �1, �2, . . . , �� ∈ ℝ
for � ∈ ℕ, such that � : = ��� �1, . . . , �� ,
�1, �2. . . , �� ��� � × � pairwise
permutable matrices, � ∈ �([ − �, 0], ℝ),
and � : [0, ∞) → ℝ� be a given function.
Then the solution of the Cauchy problem
consisting of the equation
         '

1 1 2 2 ... n ny t By t B y t B y t f t          (3)
with initial condition in Equation (2) has the
form
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θ is N−dimentional vector of zeros
and    1 2
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 is the multiple delay

matrix exponential define as
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(6)

For � = 2,3, . . , � and    1 2 1

1 2

, ,..., 1
1 , ,...,

j j

n

B B B t
jY t e 

  
  

  .
Michal and Frantisek used unilateral Laplace
transform and derived the representation of
solutions for linear nonhomogeneous
differential equations with any finite number
of constants delays and pairwise permutable
� × � matrices which another extension of
Khusainove and Shuklin work. They later
consider the following equation,
       

   

'
1 1 2 2 ...

,n n

y t Ay t B y t B y t

B y t f t

 



    

  
(7)

with Equation (2) as initial condition . To
obtain the closed-form solution of Equation (7)
Michal and Frantisek first transformed the
equation to linear DDEs with multiple delays
in which the delay independent term
��(�) = 0. By this transformation, they used
their derived result to obtain the
representation of the solution of Equation (7).
However, this result is not used to determine
any solution properties of the corresponding
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nonlinear equation, but rather it was only
meant for practical calculation of linear
problems of the form of Equation (7).

Therefore, in this work, the Natural transform
is applied to derive another representation of
Equation (7). The idea for choosing Natural
transform over Laplace transform here is
because the Natural transform generalised
both the theory of Laplace and Sumudu
transforms, and also the application of Natural
Transform to delay differential equations is
very limited. In addition, our derived result is
not only meant for practical calculation, but it
can be also used to study the exponential
stability of solution for the following
nonlinear systems of DDEs.
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(8)

with Equation (2) as initial condition. The
sufficient conditions for the exponential
stability of the trivial solution of Equation (8)
are derived using the stability criteria provide
by Medved and Michal in 2012. In this work
they consider different form of nonlinearity
based on the following definition.
Defifinition 1.1 Let �1, �2, . . . , �� be � × �
matrices and � : [0, ∞) be a given function.
Suppose 0 < �1, �2, . . . , �� ∈ ℝ such that
� = ��� {�1, �2, . . . , ��} for � ∈ ℕ and
� ∈ ([ − �, 0], ℝ). If a function y(t) ∈
C ([ − τ, 0), ℝ) ∩ C1([0, ∞), ℝ) (Only the
right-hand derivative to be considered at � =
0) solves Equation (3) and also satisfifies the
initial condition in Equation (2), then y(t) is a
solution of the Cauchy problem defined in
Equations (2) and (3).

MATERIALS AND METHODS

The definition and some important properties
of Natural transform for further use in this
research are rendered here. First, recall the

defifinition of Heaviside unit step function
�(�) given by

  1, 1
0, 0

t
H t

t


  
,
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0,

t
H t H t

t







    
For 0 ≤ � ∈ ℝ , then the Natural transform
�+ of the function �(�)�(�) = �(�)
defined on ℝ+ can be defined over a set

       1 2: , 0 , 1 0, ,j

t
jA y t M y t Me t j Z  

           
  

As in the given integral:

       
0

, ; , 0, .stN y t Y s u e y ut dt s u


         (9)

Lemma 2.1 Let F(s, u) and G(s, u) be the
Natural transform of the functions �(�)
, �(�) > 0 . Then for � ≥ 0, the following
properties of Natural transform hold (see
Fethi el al.)

       1. , ,N af t bg t aN f t bN g t a b R               

     ' 0
2. ,

fsN f t N f t
u u
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where ∗ is a convolution operator, N− denote
the inverse of N+ ,    1 , ,..., ,nH s u H s u are
respectively the Natural transform of and
1 2, ,...., 0nh h h  such that

       1 2 1 2
0

* *...* ... .
t

n nh h h h a h a h t a da 
Definition2.1 Let �, � ∈ ℝ such that �, � ≥
1 and �(�) be Heaviside unit step function,
then for simplicity define a function
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Lemma 2.2 Let α ∈ ℕ and τ > 0 then
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Proof
Using an induction method, for α = 1 the
result follows from number 4 of Lemma 2.1.
Suppose the statement is true for α = k, then it
is suffices to show the statement also holds
for α = k + 1. Now, from number 3 of Lemma
2.1 we have
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This completes the proof of the Lemma.
Therefore, based on the Definition 2.1 the
inverse Natural transform of n multiple of
Heaviside functions was successfully
established. The generalization of this result is
given in the following Lemma 2.3.

Lemma 2.3 Let �� ∈ ℕ and τ > 0 then
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(10)

where
1, 3
0 3n







  
and 1, 2

0 2n







  
Proof
Also by induction method with respect to �.
Now, for � = 1 the result is obtained from
Lemma 2.2. Suppose the result is also true for
� = �. Let left-hand side of Equation (10) be
denoted by �� then
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where B(., .) is the Eula beta function. By
rewritting this function using gamma
functions � �, � = Γ � Γ �

Γ �+�
this leads to
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The the proof is now completed.

Lemma 2.4 Suppose the assumptions of
Lemma 2.3 are satisfied. If �1, �2, …, �� are
� × � matrices and � is an N−dimentional
vector then
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Proof
Consider the following equation
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The proof is now completed.

2.1 Derivation of closed-form formula

To obtain the main result of this work it is
necessary to get the sufficient condition for
the solution �(�) of Equation (3) to be an
element of set A. In such case, there is need to
recall the result of multi-delayed matrix
exponential  1 2

1 2

, ,...
, ,...

n n

n

B B B te 
  

 obtained in Medved
and Michal work as given in the following
Lemma 2.5.

Lemma 2.5 [4] Let � > 0, �1, �2, …, ���ℝ , and
B1, B2, …n be as defined in Theorem 1.2. If

i i
i iB e  for each � = 1,2, …, � then
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Lemma 2.6 Suppose all the assumptions of
Theorem 1.2 are satisfified and let the
function � be an element of set � . Then the
solution � � of Equations (2) and (3) is also
in A.
Proof

Let 0 < �, �1�ℝ such that � � ≤ ��
�

�1 for
every � ∈ −1 � × 0, ∞ , � ∈ ℤ+ . Let
�1, �2, …, �� ∈ ℝ such that �� ≤ ������� then
from Lemma 2.5, �� � ≤ ��� for any � ∈ ℝ for
� = �=1

� ��� . Let Ω = max
−�,0

� � for � ≥ 0 , then

we have
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For a very large value of �1 then
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where �, � ≥ (� + �1) are constants. Hence
�(�) is in set �.

So, Theorem 2.1 below gave the closed-form
formula for the representation of the solution
of Equations (2) and (3) and proved using the
essential notions of NT.

Theorem 2.1 Let �1, �2, …, �� be pairwise
permutable � × � that is, BiBj = BjBi for
every �, � = 1,2, …, � ∈ ℕ and �1, �2, …, �� >
0 such that

� = �1, �2…, �� . If � ∈ 0, � , ℝ� and �
belongs to set A (there exist some constants

M, c1 > 0 such that � � < ��
�

�1 for all � ∈
−1 � × 0, ∞ , � ∈ ℤ+ Then the solution of
the Cauchy problem consists of Equations (2)
and (3) can be expressed in the following
form
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for � = �1, �2, …, ��,
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Proof
By Lemma 2.6 the solution, � � ∈ �
therefore, the Natural transform can be
applied to study Equation (3). Hence, from 2
of Lemma 2.1 the following are obtained
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where � is defined in Equation (5). Suppose
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that, the fraction �
�
is large enough such that

�=1
� ��� �

−���
� ≤ �

�
, where . is a fixed

induced norm. Then by the theory of matrices

� − �=1
� �=1

� ���� �
−���

�

�
� is non-singular. Hence

the following holds
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Therefore, the solution �(�) can be expressed
as follows
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So, by using multinomial Theorem we obtain
the following equation
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(15)

Now, apply 5 of Lemma 2.1 on Equation (15)
to get

 

   

, ,..., 01 2

0
1 1 2

1 1

1

*
, ,..., !

* 0 .

n

i

i

n

n

s
n u

n n
i

i

tX H t
n

eN s u B s u
s

  







 


   











 



 
  

  

     
        

 



(16)

Applying Lemma 2.4 on Equation (16) to have
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Also, by using multinomial Theorem
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Now by 3 of Lemma 2.1 Equation (18) leads
to
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Now, apply 5 of Lemma 2.1 on the left-hand
side of Equation (19) to get
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Therefore, using Equation (17) and 5 of
Lemma 2.1 Equation (20) becomes
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Now, for every � = 1,2, …, � the integral in
Equation (21) can be compressed to 0

�� .� when
�� < � and lead to
�(� − �� ) → �(� − �� ). And from the
other hand, i.e. for �� > �, this can be
extended to 0

�� .�
Hence,

   
0

, 1, 2,..., .
j

j jX X t a a da j n


    
Lastly, by replecing �+[�(� − �� )] with
�(�, �) in Equation (18) and following the
same process then �� can be derived as

   

     

   

1
. ...1 2.

11 20

1

0

0

, ,...,

1

! !

.

i

n

i i
i

n

t n

j i
in

t

mn
m n m

i in
i

m

t

X B

t a t a
f a da

n m m

X t a f a da

  



 




  

 















   
    

  

       
  

  
  
 

 

 






(22)

And this completes the proof.
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Corollary 2.1 Suppose �, �, �1, �2, …��, and �
be define in the manner as in Theorem 3.1.
Let �, �1, �2, …, �� be pairwise permutable
� × � matrices, then the solution of the
Equations (7) and (2) has the form

 

 

     

     

1 0

0

0,

0
0

"
,

in

A i A
n

t

i A

tt

t
y t X t B X t a

a da X t a f ada







 



  


   


    






(23)

where

 

 

   

1
. ...1 2.

1 2

~
1

0 1

, ,...,

1
,

! !

n

i i
i

n

i

At
A

n
t

mn
m n m

i i nn
i

i
m i

X t e

t t
B

n m m

  

 






  

 












 

 
  

 

     
    

  
 




 

(24)

for all � ∈ ℝ such that
~

, 1, 2,... .iA
i iB B e i n 

Proof
By setting � � = ���� � then a new problem
is obtained in � given by

     

   
     

~ ~
'

1 21 2

~ ~

....

, 0

, 0,

n n

At

v t B v t B v t

B v t f t t

v t e t t t

 



  

    

   

    

(25)

where  
~

Atf t e for every t ≥ 0. By Theorem

2.1 the solution to Equation (25) can be given
as

 

 

     

     

~

~ ~ ~ ~

1 0

~ ~ ~

0

0,

0
0

"
,

in

i
n

t

i

tt

t
v t X t B X t a

a da X t a f a da







 



  


   


    


 



(26)

Where
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. ...1 2.

~

1 2

~
1

0 1

, ,...,

1
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n

i i
i

n

i

At

n
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i i nn
i

i
m i

X t e

t t
B

n m m

  

 






  

 












 

 
  

 

  
   

    
  
 




 

Now, by comming back to y and using

   
~
0 0  implies that

         

       

~ ~ ~ ~ ~ ~

~ ~ ~
,

A t aAt
ii j i

At At

e B X t a t B e X t a t

e X t a f a e X t a f a

   



     

  

and    
~

.At
AX t e X t Hence the result

follows immediately.

RESULTS

This section is designed to derive sufficient
conditions that guarantee the exponential
stability of the solution for a different form of
nonlinear DDEs with multiple numbers of
constant delays. Thus, it is important to recall
the following definition.
Definition 3.1 Let �: ℝ� × … × ℝ� → ℝ be a
given function and �, �1, �2, …, �� be
pairwise � × �permutable matrices. Suppose
�1, �2, …, �� ≥ 0 with � = ��� �1, �2, …, ��
and � ∈ ��

1 . Then the solution ��[ − �, ∞) →
ℝ� of equation
       

      

'
1 1

1

...

, ,..., ,
n n

n

y t Ay t B t B t

F y t y t y t

 

 

     

 
(27)
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satisfies Equation (2) is said to be
exponentially stable if there are some positive
constants �1, �2 and � which depend on
�, �1, �2, …, ��, � and � 1define by

� 1 = max
−�,0

� � + max
−�,0

�' �

Such that
�� − �� ≤ �1�−�2�, � ≥ 0,

Where �� � is any solution of Equation (27)
which satisfies the initial condition

�� � = � � , − � ≤ � ≤ 0

With � ∈ ��
1 and � � − � � ≤ �.

Lemma 3.1 Let � ∈ ℕ, 0 ≤ �1, �2, …, �� and
�1, �2, …, �� b e pairwise permutable � × �
matrices. If �� ≤ ������� for � = 1, 2, . . . , �,
where �� ∈ ℝ such that �=1

� ��� �� ≤ �, then
� � ≤ ����, for 0 ≤ � ∈ ℝ.
Proof
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(28)

Since n, m ≥ 0, therefore the following hold
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n
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(29)

Since �=0
� 1

�−� !
� is convergent power series

implies that
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! !. !... !n
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i

n

n

i i i in
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m nt

X t Ce
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(30)

where  max ,i  a constant

  
   

2

1 2
01 2

1 ...
! !... ! !

n

n
mn

C
n m




 

  
   






and
1

n

i
i

 


 such that � ≥ �.

Theorem 3.1
Let �, �1, �2, …, �� be pairwise permutable
� × � matrices, �1, �2, …, �� ≥ 0 with � =
��� �1, �2, …, �� , where � ≥ 0. Suppose the
eigenvalues �1, �2, …, �� of a matrix � posses
the property that ���1 ≤ ���2 ≤ … ≤
���� ≤− ℎ ≤ 0 . Let �1, �1, …, �1 ∈ ℝ such
that �� ≤ ������� for � = 1,2, …, � . If � =

�=
� ��� and � � = � � then the solution

of the system
          '

1 1 ... n ny t Ay t B t B t f y t       (31)
is exponentially stable.
Proof
Since Equation (31) satisfies Equation (2)
then according to Corollary 2.1 its solution
has the following form

         

    

1 0

0

0

,

in

A j A i
j

t

A

y t X t B X t a a da

X t a f y a da



  


   

 

 


where    .At

AX t e X t From the given

property of eigenvalues of � implies that there
are some positive constants ℎ, � such that
��� ≤ ��−ℎ� for all � ≥ 0 . Also since

� � = � � � therefore for all � > 0
there exists a positive � such that if � < �
implies that � � > � � . Hence, for � ≥
0 and � � is sufficiently small for � ∈
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[0, �] then by applying these two estimations
together with Lemma 3.1 yield

        

      

1 0

0

0

,

in
h t h t a

j
j

t
h t a

j

y t Ke K B e

a da K e y a da


 





 

  



 

 

  

 


(32)

where � = ��. Assume that � � ≤ �, for
� ∈ [0, �] and � ≥ 0 and let � � =
� �−ℎ � � � then define a function

       '

1 0

, 0 .
in

h a
j j

j
M K K B e a da


    



    (33)

Hence, the following inequality follows from
Equations (32) and (33).

     '

0

, .
t

u t M u a da    (34)

By applying Gronwalls inequality, we
obtained an estimated solution of Equation
(31) as

         ', .k t KP h ty t e u t M e      (35)
Now, for � ≥ 0 , if � 1 1 is sufficiently
small and � ≤ ℎ−�

�
then 0 ≤ � �, �' �−�� for

� = ℎ − � − �� > 0. Therefore, the
solution of Equation (31) is exponentially
stable.
Theorem 3.2 Suppose the assumptions of
Theorem 3.1 are satisfied. Let
� �, �1, …�� = � � + �1 + … + �1
that is for all � > 0 there exists δ > 0 such
that if � , �1 , …, �1 < � implies
� �, �1, …�� < � � + �1 + … +
�1 . Then the solution of Equation (27) is
exponentially stable.
Proof
Also, Equation (27) satisfies Equation (2)
then according to Corollary 2.1 its solution
has the form

         

   

1 0

1 2
0

0

, , ,..., ,

in

A j A i
j

t

A n

y t X t B X t a a da

X t a f y v v v da



  


   

 

 


From the given property of eigenvalues of �
implies that there are some positive constants
ℎ, � > 0 such that ��� ≤ ��−ℎ� . This
assumption and Lemma 2.1 lead to the
definition of the following function
       

   

     

1 0

10 0

0

.

i

h t

n
h a

j j
j

t t n
h a

i
i

u t e y t k

K B e a da

KP u a da KP e v a da










 











 

 

 

 

 

(36)

Since, �� � = �� � − �� = � �−ℎ �−�� so it
is obvious that if 0 ≤ �, � � , � � −
�1 , …, � � − �� < � for � ∈ [0, �] and
� ≥ 0 then

       
0 0

,i

t t
h

iu t M KP u a da KP e u a da        (37)

where � is defined in Equation (33). Let � =
��� �, � , �0 = �� and �� = ��� ℎ−� �� ,
� = 1, 2 . . . , � then define a function

     0
10 0

.
t tn

i i
i

b b u a da b u a da u t 


      (38)

Suppose for a convineint choose of � � and
� = ���[�� ], then the function � is defined
in such way that �(� − ��) ≤ 2�. Thus, the
given inequality holds

         '
0

1 1

2 2 , 0 .
n n

i i
i i

t b t b t b t b    
 

     (39)

Hence,   1
2

n

i
i
c h t

y t be




 
   
 


 . So if � � , � and

are choose such that b < δ and for a small �,
the Equation (27) has stable solution.

Theorem 3.3 Suppose the assumptions of
Theorem 3.1 are also satisfied. Let
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   0 1 2

1 2 1 2, , ,..., ...
n

n nf y v v v O y v v v       

that is for all � > 0 there exists � > 0 such
that if 1 2, , ,..., ny v v v  implies

   0 1 2

1 2 1 2, , , ..., ... .
n

n nf y v v v P y v v v   
    

Then, the solution of Equation (27) is
exponentially stable.
Proof
Also, Equation (27) satisfies Equation (2)
then according to Corollary 2.1 its solution
has the form

         

   

1 0

1 2
0

0

, , ,..., .

in

A j A i
j

t

A n

y t X t B X t a a da

X t a f y v v v da



  


   

 

 


Now, from the given property of eigenvalues
of � implies that there are some positive
constants ℎ, � > 0 such that ��� ≤ ��−ℎ�.
This assumption together with Lemma 3.1
yield

         

     
0

1 0

10

0

.

i

i

n
h t h a

j
j

t n
h a

j i
i

u t e y t k K B e

a da KP e y v a da


 






 

 







  

 
    

  

 



(40)

Since, � � = � ℎ−� � � � therefore the
following functions can be obtained as

         
0 0

,
i i

h a
i i iv s e u a v a y a

      

    .
i i

ih a
iu a e    


 
  Now, it is obvious
that if 0 ≤ �, � � , � � − �1 , � � −
�2 , …, � � − �� < � for some � ∈ [0, �]
and t ≥ 0 then

         
0

0
10 0

,
i

t tn

i i
i

u t b a u a da a u a da   


    (41)

where

        01
0 ,

i
ih t h t t

it KPe KPe    
 

       

For � = 1 . . . , �, � = ��� �, � and �
is defined in Equation (33).

Let the rihgt-hand side of Equation (41) be ω,
therefore by nondegreasing nature of the
sequence {�0, �1 . . . �� } and the validity of
the inequality Equation (39), then the
following inequality also hold.

     

     

0'
0

1

0

2

, 0

i

i

n

i
i

n

i
i

t t t

t t b

 



    

  





 

 




(42)

Let �� = 2���� � and �� = ��� , for � =
1, 2, . . . , �. Then Equation (42) can be
deduced to the following form

       
    

'
0 0 1 1

... , 0 0.n n

t t t

t

     

   

  

 
(43)

Integrating both side of Equation (43) lead to

        
1 0

.
tn

i i
i

t c a a da G t   


   (44)

Hence, the result follows from Manuel
Pinto’S inequality (1990) in such a case the
following can be obtained

        1 0

,
n

t un

n i n
i nu

dzW G t a da W u
W z




   and

     

       

        

     

1 1

1

1 2 1 1

1
0

2

1 1
.

n

n nn n

n nn

n ni i

n n n n n n n nb b

c

n n
n nc c

t

n n n
n nc c

i ii ic c

W c W c W c

dz dzW c
W z W z

dz dzW c a da
W z W z

dz dz
W z W z

 




   



 



 

 

   

  

   

  

 

  

  

(45)

Oviously, �(�(0)) = �(�) = 0 . So for
sufficiently small � then

    1 1
: .

n i

n

i
i i ic

dza da
W z

 


 

    
Thus, �(�(�)) < � for all � ≥ 0 and
hence
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       1 : .u t W t G t W C     

Now, If � < � then � ≤ � < � therefore,
    , 0.h ty t Ce t  

Example: Consider the population dynamics
model given in the following equation
         
       

         
       

'
1 1 1 1 1 1 1

1 1 1 2

'
2 2 2 2 2 1 2

2 1 2 2 ,

y t y t y t y t y t

sy t y t sy t y t

y t y t y t y t y t

sy t y t sy t y t

   

 

   

 

   

   

    

   

(46)

Where �1, �2, �1, �2, � > 0 and 0 < � < �.

So it obvious that
0

0
A




 
   

such that

the eigenvalues−� <− � < 0 , 1

2

0
0

B



 

  
 

and the function �: ℝ4 → ℝ2 define by
         

       
1 1 2 1 1 1 2

2 1 2 2 1 2 2

, ( ,

).

f y v y t y t sy t v sy t v

y t y t sy t v sy t v





   

 
It is also easy to see that � and � are 2 × 2
pairwise permutable matrices and
� �, � = � � 2 + � 2 . Since ��� ≤

��−�� for all � ≥ 0 so if � < µ where �
satisfies

0
.

0
e e

e






 


 (47)

Therefore, according to Theorem 3.3 the
solution of Equation (46) is exponentially
stable.

CONCLUSION

In this work, using convolution Theorem, the
inverse Natural transform for an n th-multiple
of Heaviside unit step functions are derived.
Based on this result, a closed-form formula
for the representation of the solution of
nonlinear systems of DDEs with single and
multiple numbers of constant delays is
successfully established. The closed-form
representation formulation is used to develop
a criterion for the exponential stability of the
solution of difffferent form of nonlinear
systems of DDEs.
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