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ABSTRACT
In this paper, the numerical solution of optimal control problems using predictor-corrector
methods with a forward-backward sweep algorithm is presented. The algorithm is developed to
solve the state variable forward in time and the adjoint system alongside the control functions
backward in time. The starting values of the methods were obtained using the classical Runge-
Kutta method. The proposed algorithm is implemented using MAPLE 18 software to avoid a
computational error. Some numerical examples are presented to illustrate the accuracy, reliability,
consistency, and effectiveness of the present method. Finally, the results obtained were
compared with the exact solution, and it performed favorably.
Keywords: Control Variable, Forward-Backward Sweep Algorithm, Predictor-Corrector Method,
Runge-Kutta Method, State Variable.

INTRODUCTION
The predictor-corrector methods uses two
formulae: predictor and corrector formulae to
solve ordinary differential equations. The
solution to 1( )nx t be first estimated using the
predictor formula. Using the single-step
technique or multiple prior points, the value

1( )nx t is determined using the known
solution at the previous point ( , ( ))n nt x t [1, 2].
The corrector is used after an estimate of

1( )nx t has been discovered, and it uses the
estimated value of 1( )nx t on the right side of
the equation (implicit formula) to compute a
new, more accurate value for 1( )nx t on its
left side. The prediction technique first
calculates the value of 1( )nx t , which is then
used in the right hand side of the corrector
formula, resulting in a better approximation of

1( )nx t . The acquired value of 1( )nx t is once
more replaced in the corrector formula to
determine an even more accurate

approximation of 1( )nx t . This process is
repeated until two iterations of 1( )nx t

provides values that are very close to one
another. Since there is no need to solve a
nonlinear equation, the corrector equation,
which is an implicit equation, is applied
explicitly in this scenario. [3].
Many researchers presented articles on Linear
Multi-step Methods (LMM) and recently, [6]
presented a work on Modified Runge-Kutta
method with convergence analysis for
nonlinear stochastic differential equations
with Holder continuous diffusion coefficient
and reported that the new method can achieve
the optimal order of convergence compared to
the classical Euler-Maruyama method at a
finite time � without any restriction on the
step size.
Applied Mathematics is concerned with
methods of determining the best control
method for a dynamical system known as
optimal control theory. The work in [5] gives
the foundation for optimality known as the
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Pontryagin Minimum Principle (PMP), and is
one of the most significant contributions to
optimal control theory. This ground-breaking
result offered a thorough analysis of optimal
control theory, including different numerical
approaches for resolving optimal control
problems. Also, [8] developed a robust
method for optimal control problems
governed by system of Fredholm integral
equations in mechanics and established that
Lagrange polynomials is introduced to
transform the optimal control problems into a
nonlinear programming problem, and the
resulting equations were implemented by the

optimization algorithm using Lagrange
collocation approach.
In a simple optimal control problem for
ordinary differential equations,
( )x t and ( )u t were used to represent the state

variable and the control variable, respectively.
As a result of change in the control variable,
the control function changes over time and the
state variable satisfies an ordinary differential
equation that depends on the control variable.
[6, 7]. Finding a piecewise continuous control
( )u t and the related state variable ( )x t in our

basic case constitutes the optimal control
problem, according to [9], as

 
0

, ( ), ( )
nt

t

J f t x t u t dt  (1)

which satisfies a given dynamical control system of the form
 '( ) , ( ), ( ) ,x t g t x t u t (2)

and initial condition
0(0)x x (3)

In this article, our aim is to provide numerical
solution of an optimal control problems of
ordinary differential equations using
predictor-corrector method. We developed a
Predictor-Corrector Method, (PCM) based on
Adams-Moultons Methods and used classical
Runge-Kutta method to approximate the
previous values. The forward-backward
algorithm solved the state and adjoint
functions of the optimal control problems. We
tested the method on a set of optimal control
problems using the step size ℎ = 0.1 within
the interval 0 1x  . Moreover, the work in
[10] obtained the solution of ordinary
differential equations optimal control
problems using classical Runge-Kutta method.
In this purpose, our work will serves as an
improvement to this approach and give more
accurate results.
The paper organized as follows. In Section 2,
important preliminary definitions and
theorems from optimal control and Linear

multi-step methods were given. Section 3,
explains the transformation of optimal control
problems to linear multi-step method. While,
the numerical algorithm for the proposed
method contained in section 4. Also, section 5,
demonstrates the efficiency and reliability of
the proposed method using some numerical
examples and the computational results.
Finally, Section 6, contains the conclusion
remark.
Preliminaries
In this section, we introduce some basic
definitions, theorems, and preliminaries facts
which are used throughout this paper.
Definition 1: [11] Optimal Control is the
process of determining control and state
trajectories for a dynamic system, over a
period of time, in order to optimize a given
performance index.
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Definition 2: [12] State Function is the set of
functions used to describe the mathematical
state of the system.
Definition 3: [12] The control or control
function is an operation that controls the
recording, processing, or transmission of data.

Definition 4: [12] Performance Index is a
measure of the quality of the trajectory.
Theorem 1: [16] If ( ( ), ( ), )x t u t t is the
minimizer of (1), then there exists an adjoint
state � for which the triple ( ( ), ( ), )x t u t t
satisfies the optimality conditions in (2) for all
� ∈ [�0, ��] , where the Hamiltonian � is
defined by

     , ( ), ( ), ( ) , ( ), ( ) ( ) , ( ), ( )H t x t u t t f t x t u t t g t x t u t   (4)
Definition 5: [11] Let :x I  be
continuous on I and differentiable at all but
finitely points of � . Further, suppose that
'( )x t is continuous wherever it is defined.

Then, we say ( )x t is piecewise differentiable.

Definition 6: [2] An explicit methods are
those methods that used an explicit formula

for calculating the value of the dependent
variable at the next value of the independent
variable. In an explicit method, the right hand
side of the equation only has all the known
quantities. Therefore, the next unknown value
of the dependent variable, 1( )nx t is calculated
by evaluating an expression of the form

 1 1( ) , , ( )n n n nx t f t t x t  (5)
Definition 7: [2] In an implicit method the equation used for computing 1( )nx t from the known
quantities , ( )n nt x t and 1( )nt t has the form

 1 1 1( ) , , ( ), ( )n n n n nx t f t t x t x t   (6)
here, the unknown 1( )nx t appears on both side of the equation.
Theorem 2: Lipschitz theorem [2] If ( , ( ))f t x t is a real function defined and continuous in
( )nx t , � ∈ ( − ∞, + ∞), where 0t and � are finite, then exists a constant � > 0 called Lipschitz

constant such that for any two values 1( ) ( )x t x t and 2( ) ( )x t x t

 1 2 1 2, ( ) ( , ( )) ( ) ( )f t x t f t x t L x t x t   (7)
where � ∈ (�0, �), then for any � �0 = �0 , then the initial value problem has a unique solution
for � ∈ (�0, �).
Theorem 3: Taylor’s theorem in Two Variables [1] Suppose that f(t, x) and all its partial
derivatives of order less than or equal to (� + 1) are continuous on domain Ω = {(�, �) : � ≤
� ≤ �, � ≤ � ≤ �} and (�, �) and (� + �, � + �) are all belong to Ω, then
 , ( , ) ( , ),n nf t x P t x R t x     (8)

Where
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 






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  

 
   

        
  

     


 (9)

11
1

1
0

11( , ) ( , ).
( 1)!

nn
n i i

n n i i
i

n
R t x f t x

in t x
 


 

 


  
     

 (10)

The function ( , )nP t x is called the nth Taylor
polynomial in two variables for the function
�(�, �) about (�0, �0) , and ( , )nR t x is the
remainder term associated with ( , )nP t x .

Definition 8: [2] Runge-Kutta methods have
the high-order local truncation error of the

Taylor methods but eliminate the need to
compute and evaluate the derivatives of
�(�, �) . This is the family of single-step
explicit, numerical techniques for solving
first-order ordinary differential equations and
used to finding the approximation 1( )ix t at
the mesh point 1it  of the form

'
1

0
( ) ( )

r

n n i i i i
i

x t x h w x t h


   (11)

where � is the slopes, �� is the weighted average and �� is the increment of the step-size ℎ. For
the derivation of this methods, one need to consider Taylors Theorem in two variables.
Definition 9: [14] An m−step multi-step method for solving the initial value problem has a
difference equation for finding the approximation 1( )ix t at the mesh point 1it  represented by
the following equation, where � is an integer greater than 1:

'
1 1 1

1 0
( ) ( ) ( )

r r

n i n i i n i
i i

x t x t x t     
 

   (12)

where � and � are given real constant. Thus,
if �0 = 0 , the linear multi-step method is
known as explicit method and if �0 ≠ 0 , the
linear multi-step method is known as implicit
method.

Definition 10: [14] The local truncation error
for multi-step methods is defined analogously
to that of one-step methods. If 1( )nx t  , is the
exact solution, and 1( )nx t is the approximate
solution, then the local truncation error 1( )nT t

is defined by
1 1 1

'
1 1 1

1 0

( ) ( ) ( )

( ) ( ) ( )

n n n
r r

n i n i i n i
i i

T t x t x t

x t x t h x t 

  

    
 

 

   
(13)

Our goal is to solve such problems
numerically, that is, develop an algorithm that
generates an approximation to an optimal
piecewise continuous control ( )u t . For equal
intervals of width ℎ of the independent

variable by performing iterations till the
desired level of accuracy is obtained. In
general, we divide the interval [�, �] on which
the solution is derived into finite number of
sub intervals by the points
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0 1 2 3 , ,na t t t t t b      called the mesh
points. This done by setting up 0nt t nh  ;
these points will usually be equally spaced
[11].
Transformation of Optimal Control
Problems to Linear Multi-step Method
For this purpose, Adams-Bashforth and
Adams-Moulton Predictor-Corrector Methods
will be adopted for the solution of optimal
control problem (1)−(3). Therefore, ( )x t and
( )t are the vector approximations for the

state and adjoint respectively. We first make
an initial guess for ( )u t over the given interval,
and using the initial condition 1 0( )x x t and

the values for ( )u t , solve ( )x t forward in
time according to its differential equation in
the optimality system, and then using the
transversality condition 1 1( ) ( )n t t   and the
values for ( )u t , and ( )x t , solve
( )t backward in time according to its

differential equation in the optimality system.
Finally, update ( )u t by entering the new �(�)
and �(�) values into the characterization of
the optimal control [11].
Consider an approximation ( )x t h of the
dynamical control system of the form of an
ordinary differential equation with step size ℎ
as follows:

   0 0'( ) , , ( ) .x t f t x t x t x  (14)
Now, integrating (15) from nt to 1nt  , we get

 1

1( ) ( ) , ( )n

n

t

n n t
x t x t f z x z dz

    (15)

To evaluate the integrand in (15), � (�, �(�)) is approximated by a polynomial that interpolate
� (�, �(�)) at � points 1 1 2 2( , ( )), ( , ( )), ( , ( )), , ( , ( )),n n n n n n n r n rt x t t x t t x t t x t      and applying
Newton’s Backward difference of degree (� − 1)�ℎ, with nt t h  , we obtain

1 (0)
1 0

0
( ) ( ) ( 1)

r
i i

n n n r
i

x t x t h f dr T
i





 
     

 
 (16)

where (0)
rT is the reminder term

1(0) 1

0
( 1) ( ) .r i r

rT h f dr
i


  
   

 
 (17)

Again, integrating (14) from n kt  to 1nt  , we get

 1

1( ) ( ) , ( )n

n k

t

n n k t
x t x t f z x z dz


    (18)

To evaluate the integrand in (18), � (�, �(�)) approximated by a polynomial that interpolate
� (�, �(�)) at � points, that is 1 1 1 1 1 1( , ( )), ( , ( )), ( , ( )), , ( , ( )),n n n n n n n r n rt x t t x t t x t t x t        and
applying Newton’s Backward difference of degree (� − 1)�ℎ, with nt t h  , we obtain

1 ( )
1 1

0

1
( ) ( ) ( 1)

1

r
i i k

n n k n rk
i

x t x t h f dr T
i


  


 
      

 (19)

where ( )k
rT is the reminder term

1( ) 2 1 11
( 1) ( ) .

1
k r i r

r k
T h f dr

i


  



 
    

 (20)
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Numerical Algorithm
In this section, a step-by-step algorithm was
carried out to obtain a standard and more
reliable scheme of the predictor-corrector
methods for optimal control problems in
ordinary differential equations. We first
obtained the modified classical Runge-Kutta
method, which serves as a single-step
algorithm, and then proceeded to obtain the
general scheme for the method developed.

This work was developed using Maple 18
software for error-free and easy computations.

Step 1: Input, endpoints �, �; integer � ;
initial condition �� = � �0 = �0.

Step 2: Set the step size ℎ = (� − �)/� ;
and �0 = �; then Output (�0, �0).

Step 3: Set For � from 0 to 3 do step4 and use
the initial guess of �0 to solve �(�) forward in
time according to its differential equation in
the optimality system transformed using
modified Classical Runge-Kutta method.

Step 4: Set
 

 

 

 

 

1

1
2 1

2
3 1

4 1 3

1 1 2 3 4

, ( ), ( ) ;

1, ( ) ( ) , ( ) ) ;
2 2 2
1, ( ) ( ) , ( ) ) ;

2 2 2
1, ( ) ( ) , ( ) ) ;
2
1( ) ( ) 2 2 .
6

i i i

i i i i

i i i i

i i i i

i i

k hf t x t u t

khk hf t u t u t x t

khk hf t u t u t x t

k hf t h u t u t x t k

x t x t k k k k











     
 
     
 
     
 

    

(21)

Step 5: end do:
Step 6: Set � = 3 − �
Step 7: Set For � from 0 to 3 do step 8 and solve the transversality condition 1 1( )N t   using
the values of �(�) ��� �(�) backward in time according to its differential equation in the
optimality system transformed using modified Classical Runge-Kutta method.
Step 8: Set

 

   

   

   

1

1
2 1 1

2
3 1 1

4 1 1 3

, ( ), ( ), ( ) ;

1 1, ( ) ( ) , ( ) ( ) , ( ) ) ;
2 2 2 2

1 1, ( ) ( ) , ( ) ( ) , ( ) ) ;
2 2 2 2
1 1, ( ) ( ) , ( ) ( ) , ( ) )
2 2

j i j j

j j j j j j

j j j j j j

j j j j j j

l hg t t x t u t

lhl hf t u t u t x t x t t

lhl hg t u t u t x t x t t

l hg t h u t u t x t x t t l









 

 

 



      
 
      
 
    


 1 1 2 3 4

;

1( ) ( ) 2 2 .
6i it t l l l l 





    

(22)
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Step 9: end do:
Step 10: Set �� = �0 + �ℎ.
Step 11: For � from 4 �� � do step 12 to step 13
Step 12: Substitute for � = 3 , into (17) to obtain Adams-Bashforth (explicit) method of the
form

 

 

 

 

1

1 1 1 1 1

2 2 2 2 2 1

3 3 3 3 3 2

1( ) , ( ), ( ) ( ) ;
2

1( ) , ( ), ( ), ( ) ( ) ;
2
1( ) , ( ), ( ), ( ) ( ) ;
2
1( ) , ( ), ( ), ( ) ( ) ;
2

i i i i i

i i i i i i

i i i i i i

i i i i i i

i

f t f t x t u t u t

f t f t x t t u t u t

f t f t x t t u t u t

f t f t x t t u t u t

x









    

     

     

   
 
   
 
   
 
   
 

 1 1 2 3( ) ( ) 55 ( ) 59 ( ) 37 ( ) 9 ( ) .
24

P
i i i i i

ht x t f t f t f t f t       

Step 13: Substitute for � = 0 ��� � = 3, into (20) to obtain Adams-Moulton Method (implicit)
method of the form

     

     

     

1 1 1 2 1 2 1 2

1 1 1

1 1 1 1 1

1 1 1( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) ;
2 2 2

1 1 1( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) ;
2 2 2
1 1 1( ) , ( ) ( ) , ( ) ( ) , ( ) ( )
2 2 2

i i i i i i i i

i i i i i i i i

i i i i i i i i

f t f t x t x t t t u t u t

f t f t x t x t t t u t u t

f t f t x t x t t t u t u t

 

 

 

       

  

    

     
 

     
 
   

     

 

2 2 1 2 1 2 1 2

1 1 1 2

;

1 1 1( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) ;
2 2 2

( ) ( ) 9 ( ) 19 ( ) 5 ( ) ( ) .
24

i i i i i i i i

C
i i i i i i

f t f t x t x t t t u t u t

hx t x t f t f t f t f t

        

   


 
 
     
 

    

Step 14: Output  ( ), ( )P C
i ix t x t and set for next iterations.

Step 15: Set � = � + 2 − �.
Step 16: Repeat step 11 to step 14 for the Backward swept algorithm.
Numerical Examples
In this section, three different numerical examples were given to show the efficiency of our
proposed method for approximating the solution of optimal control problems. In all the examples,
the step size, ℎ, is set to be 1.
Example 1. Find the optimal solutions that minimize objective function

1 2

0
min ( ) ,u t dt
subject to dynamical condition '( ) ( ) ( ),x t x t u t  (0) 1,x 
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and transversality condition (1) 0. 

with the exact solution   ( )( ), ( ) , ;
2

t tx t u t e    
 

Table 1: Absolute error of the state function for example 1
I ti x(ti)
5 0.5 1.64872 1.64873 1 × 10−5 1.64873 1 × 10−5
6 0.6 1.82212 1.82213 1 × 10−5 1.82213 1 × 10−5
7 0.7 2.01375 2.01376 1 × 10−5 2.01376 1 × 10−5
8 0.8 2.22554 2.22555 1 × 10−5 2.22555 1 × 10−5
9 0.9 2.45960 2.45961 1 × 10−5 2.45961 1 × 10−5
10 1 2.71820 2.71821 1 × 10−5 2.71821 1 × 10−5

Example 2. Consider the minimization problem of the form
1 2 2

0

1min ( ) ( ) ,
2

x t u t dt  
 

subject to dynamical condition '( ) ( ) ( ),x t x t u t  (0) 1,x 
and transversality condition (1) 0. 

with the exact solution    1
14

( ), ( ) 1,1 ;
2 2

t
t teex t u t e e


 

    
 

Table 2: Absolute error of the state function for example 2
I ti x(ti)
5 0.5 0.88096 0.88096 0 0.88096 0
6 0.6 0.91363 0.91364 1 × 10−5 0.91364 1 × 10−5
7 0.7 0.96546 0.96547 1 × 10−5 0.96547 1 × 10−5
8 0.8 1.03696 1.03697 1 × 10−5 1.03697 1 × 10−5
9 0.9 1.12884 1.12886 1 × 10−5 1.12885 1 × 10−5
10 1 1.24204 1.24205 1 × 10−5 1.24204 0

Table 3: Absolute error of the Adjoint function for the example 2
I ti λ(ti) λpi |λ(ti) − λpi|
5 0.5 0.6487

2
0.6487
3

1 × 10−5 0.64873 1 × 10−5

4 0.4 0.8221
2

0.8221
3

1 × 10−5 0.82213 1 × 10−5

3 0.3 1.0137
5

1.0137
6

1 × 10−5 1.01376 1 × 10−5

2 0.2 1.2255
4

1.2255
5

1 × 10−5 1.22555 1 × 10−5

1 0.1 1.4596
0

1.4596
1

1 × 10−5 1.45961 1 × 10−5

0 0 1.7182
8

1.7182
9

1 × 10−5 1.71829 1 × 10−5



Bima Journal of Science and Technology, Vol. 7 (2.1) August, 2023 ISSN: 2536-6041

SPECIAL ISSUE

73

Example 3. Find the optimal solutions that minimize objective function

 1 2 2

0

1min 3 ( ) ( ) ,
2

x t u t dt
subject to dynamical condition '( ) ( ) ( ),x t x t u t  (0) 1,x 
and transversality condition (1) 0. 

with the exact solution  
4 4

2 2 2 2
4 4 4 4

3 3 3 3( ), ( ) , ;
3 1 3 1 3 1 3 1

t t t te ex t u t e e e e
e e e e

 

   

 
       

Table 4: Absolute error of the state function for the example 3
i ti x(ti) xpi |x(ti) − xpi| xci |x(ti) −

xci|
5 0.

5
0.4903
0

0.4903
0

0 0.4903
2

2 × 10−5

6 0.
6

0.4584
3

0.4584
2

1 × 10−5 0.4584
5

2 × 10−5

7 0.
7

0.4449
7

0.4449
4

3 × 10−5 0.4449
8

1 × 10−5

8 0.
8

0.4493
6

0.4493
2

4 × 10−5 0.4493
7

5 × 10−5

9 0.
9

0.4717
9

0.4717
3

6 × 10−5 0.4717
9

0

1
0

1 0.5131
5

0.5130
7

8 × 10−5 0.5131
4

1 × 10−5

Table 5: Absolute error of the Adjoint function for the example 3
I ti λ(ti) λpi |λ(ti) − λpi|
5 0.5 0.9045

7
0.9045
6

1 × 10−5 0.90457 0

4 0.4 1.1618
6

1.1618
3

3 × 10−5 1.16185 1 × 10−5

3 0.3 1.4657
8

1.4657
3

5 × 10−5 1.46576 2 × 10−5

2 0.2 1.8285
2

1.8284
5

7 × 10−5 1.82850 2 × 10−5

1 0.1 2.2646
4

2.2645
4

1 × 10−4 2.26426 3.8 × 10−4

0 0 2.7916
6

2.7915
1

1.5 × 10−4 2.79162 4 × 10−5

CONCLUSION
In this paper, an improved method of solving
optimal control systems is presented using

predictor-corrector methods. Using the
concept of the Adams-Moulton method, a
predictor-corrector for the solution of an
optimal control system is developed and
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approximated with the help of the classical
Runge-Kutta method. Upon formulation of
the method, an algorithm is developed using
Maple 18 to obtain the numerical solution of
the optimal control problem.
Suitable examples of optimal control
problems were given, and the developed
numerical algorithm was used to solve the
optimal control problem. The solutions are
compared with the exact solution, and it
shows that the obtained solutions performed
favorably. Table 1, for example, shows that
there were no errors at the final time, and
similarly, from Table 2 to Table 5, the
numerical scheme and the exact solutions
were in good agreement.
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