

ASSESSING THE IMPACT OF TELECOMMUNICATION AND OIL SECTORS ON NIGERIA'S GROSS DOMESTIC PRODUCT USING VECTOR ERROR CORRECTION MODEL

¹*MAHMUD S. M. and ²MUSA G. K.

^{1&2}Department of Mathematics and Statistics, Federal Polytechnic Nasarawa, Nasarawa State, Nigeria.

Corresponding Author: mahmudsloko11@gmail.com

ABSTRACT

The contributions of oil sector and telecommunication sectors to Gross Domestic Product (GDP) in Nigeria cannot be overemphasized. Thus, this study assesses the impact of telecommunication and oil sectors on gross domestic product using the Vector Error Correction Model (VECM). To achieve this, the annual data from 1981 to 2021 was collected from the 2021 Central Bank of Nigeria Statistical bulletin. The Augmented Dickey Fuller test revealed that all the variables are stationary after first difference and they are also co-integrated. The VECM was estimated and the long run coefficient shows that the oil sector has significant positive impact on gross domestic product while telecommunication sector has negative and significant impact on GDP in the long run. Evidence from variance decomposition revealed that the oil sector and telecommunication sector explain the variance in GDP by about 33.4% and 66.3% respectively. Based on these findings, it was recommended that government should reexamine the telecommunication sector by way of increasing tax base and introducing new taxes in such a way that it does not distort the working of the economy but to increase the economic growth.

Keywords: GDP, Oil-sector, telecommunication-sector, VECM.

INTRODUCTION

Black cotton soils have been described as the Nigeria's national economic goal of development has remained to change the way production and consumption that are organized in order to diversify the country's economy, lessen its reliance on oil, and increase its independence from imports. This will help the country's citizens live better lives and fight poverty. Therefore, it will be important to assess the growth and structural changes in some key economic sectors, particularly the oil and telecommunications sectors, as we consider the economic development experience of Nigeria.

The imperative need for the telecommunications industry to exist in any economy is increased by the rapid growth, development, and contribution of

telecommunication technology. Telecommunications technology is the most cutting-edge and crucial tool for information sharing and serves as the foundation for creating economically valuable commodity markets. By connecting the domestic and international financial markets as well as the commodity market, the telecommunications industry helps a nation's economy thrive. Telecom ensures the ongoing flow of added value to the GDP, whether in the form of GDP growth or an increase in GDP per capita, e.t.c (Sajjad, 2017). Globally, the telecommunications industry has been recognized as having a general impact on practically all other economic sectors (Awoleye et. al, 2012).

Nigeria, with a population of roughly 218 million, is the continent's second-largest

Bima Journal of Science and Technology, Vol. 7 (2) June, 2023 ISSN: 2536-6041

DOI: 10.56892/bima.v7i01.411

economy and top oil producer, according to UNDP and HDI (2011). Approximately 70% of Nigerians live in poverty, despite her wealth. The recent Human Development Index (HDI) data from 2021 indicates that the average life expectancy at birth is 52.7 years. As a result, Nigeria is the member of the Organization of the Petroleum Exporting Countries with the lowest HDI score (156) overall (OPEC). Iraq is rated 132 and has a 69.0-year average life expectancy.

According to Onouha, et. al (2015), one of the main measures used to assess the strength of a nation's economy is the Gross Domestic Product (GDP). It is also used to estimate each person's standard of living within an economy. However, the market value of all legally acknowledged final goods and services produced within a nation in a specific timeframe might be used to define gross domestic product. This suggests that rather than simply adding up the quantities of each good or service, the gross domestic product also accounts for its market worth. Because it is used to gauge whether an economy is increasing faster or more slowly, gross domestic product is crucial to the health of any economy.

Several efforts have been made by researchers to empirically investigate whether relationship exists between oil and telecommunication sectors and the gross domestic product in developing Countries like Nigeria. For instance, Nwoba and Abah (2017) studied the impact of Crude oil revenue on the Nigerian Economic growth using ordinary least square regression analysis and found a long run positive relationship between oil revenue and gross domestic product. Usman, Madu and Abdullahi (2015) examined the impact of Petroleum sector on Nigeria economic growth and the result reveals that the petroleum sector has significant and positive impact on Nigeria economy. Nweze and Greg (2016) studied oil revenue and economic growth in Nigeria between 1981-2014 using cointegration test and error correction model. The results showed that there is a long-run relationship among the variables. The findings also revealed that all the variables except lag of government exerted significant impact in economic growth in Nigeria. Ronald (2017) used error correction model approach to investigate the impact of oil price on economic growth in Nigeria. The results revealed that an increase in oil price have significant negative on the Nigerian economy.

Moses (2018) studied the impact of oil revenue on Nigeria output growth using a fully modified ordinary least square method and found that the oil revenue does not have a short run relationship with economic activities of Nigeria. Ilori and Akinwunmi (2020) examined the effect of oil and non-oil revenues on economic growth in Nigeria using co-integration, ECM and found that oil and non-oil revenues harms real GDP in Nigeria. Abdulrahman (2021) empirically examined the impact of oil and non-oil export on economic performance in Saudi Arabia using OLS regression and found that oil and non-oil export have positive and significant impact on economic growth in Saudi Arabia. Ebimobowei (2020)investigated the relationship between oil revenue and economic growth in Nigeria using Pearson Product Moment Correlation and OLS regression and found that crude oil/gas export has a significant and negative relationship with real GDP in Nigeria. Akinleye, et al (2021) examined the impact of oil revenue on economic in Nigeria using ARDL and found that petroleum profit tax, inflation rate, oil revenue and exchange rate were inversely related to economic growth in both short and long run.

On the other hand, Sajjad (2012) examined the impact of Telecommunication on

economic development using OLS Regression results revealed and the that Telecommunication sector have positive relationship with the economic growth. Asogwa, et al (2013) examined the impact of telecommunication expenditure on economic growth in Nigeria using OLS regression and discovered that telecommunication, foreign direct investment and trade openness have significant positive impact on economic growth in Nigeria. Riti, et al (2016) examined the growth of non-oil sector to act as a key to diversification and performance of the economy using ARDL and found that agriculture and telecommunication sectors positively contributes to GDP at long run manufacturing sector while contributes negatively to GDP in the long run. Awoleye, et al (2012) explored the socio-economic effects of telecommunication on gross domestic product in Nigeria using OLS regression and found that telecommunication contributes negatively to GDP in Nigeria.

Masood (2012) investigated the causality issues between economic growth ICT investment in Sweden using co-integration and Granger causality test ad found a one-way causality running from ICT investment to economic Growth. Olowo, et al (2020) examined the sectorial contributions of nonoil revenue to economic growth in Nigeria using ARDL and found that environmental sector has insignificant positive impact on GDP while ICT and financial sectors contribute positively and significantly to economic growth in Nigeria. Matalqah and Warad (2017) investigated the impact of investment in the infrastructure of the telecommunication sector on economic growth in Arab Countries using modified LS and co-integration and found that investment in infrastructure for telecommunication sector has positive and significant impact on economic growth in non-oil producing Arab

Countries in the long run however, there was significant impact of investment in no infrastructure for telecommunication sector on economic growth in the oil producing Arab Countries. Oveniran and Onikosi-Allivu (2016) examined the effects of investment in telecommunication infrastructure on economic growth in Nigeria using ARDL bound testing and found that foreign direct investment in ICT improve and raised economic growth in Nigeria than government investment. Alugbuo and Eze (2021)examined economic effect the of telecommunication industry in Nigeria using correlation analysis and found that percentage contribution of telecommunication sector to GDP, tele density and consumer price index positively influence the Nigerian economy more than FDI.

Based on the existing literatures on the relationship between telecommunication and oil sectors and gross domestic product, the researchers observed that there are no clear findings established. The existing studies has revealed mixed findings. Furthermore, only few of these studies has examined the joined impact of telecommunication and oil sector on gross domestic product in Nigeria. This, provide the justification for the current study. Thus, this study assesses the impact of telecommunication and oil sectors on gross domestic product in Nigeria from the period of 41 years (1981 – 2021).

MATERIALS AND METHODS

The data used in this study were obtained from Central Bank of Nigeria 2021 Statistical Bulletin covering a period of 41 years from 1981 - 2021. Augmented Dickey Fuller (ADF) Test, Johannsen Co-integration test and Vector Error Correction Model were used as the statistical techniques for Data analysis.

Augmented Dickey Fuller Test

The ADF was used to test the stationarity of the time series data. The ADF model is given as:

$$\Delta Y_t = k + at + \phi_i Y_{t-i} + \sum_{i=1}^n \alpha_i \Delta Y_{t-i} + E_t$$

Where *Y* is a variable under study;

 Δ represent the first difference operator;

t represents the time;

 E_t represents the white noise;

n represents the maximum lag length

k, \emptyset and \propto represents the parameter to be estimated.

Co-integration Test

The Johannsen and Juselius (1990) maximum likelihood co-integration test procedure was employed in this study. The procedure test for both the existence and number of cointegrating vectors in the given series.

The multivariate co-integration test can be expressed as:

$$Y_{t} = K_{o} + K_{1}\Delta Z_{t-1} + K_{2}\Delta Z_{t-2} + \dots + K_{p-1}\Delta Z_{t-p} + \pi Z_{t-p} + U_{t}$$

Where

Y = (G, O, T), representing Gross Domestic Product, Oil sector and Telecommunication sector respectively.

t represents the vector of variables that are integrated of order one.

K = represents the matrix coefficients

 π = represents the matrix of parameter

 U_t = represents a vector of normally and independently distributed error term.

If r are the co-integrating vectors between the element of Y it shows that π is of rank (0 < r < 3).

Johansen developed two likelihood ratio tests used in estimating the number of cointegrating vectors as follows

Trace test
$$(\pi_{trace}) = T_r$$
 $(r) = -T \sum_{i=r+1}^{n} ln (1 - \hat{\pi}_i)$

maximum eigen value $(\pi_{max}) = \pi_{max}$ (r, r + 1) = $Tln (1 - \pi \mathcal{L}_{+1})$ 4

Vector Error Correction Model (VECM)

The general Vector Error Correction Model is giving as below:

$$\Delta X_t = B_1 \Delta X_{t-1} + \dots + B_{p-1} \Delta X_{t-p+1} + \pi$$

$$Y_{t-p} + U_t \qquad 5$$

Where $\pi = aB^t$,

 B_i represents the matrix of parameters,

 π contains long run information. The matrix *a* of error correction coefficients measure the speed at which the variables adjust to restore long run equilibrium.

Matrix B is long run coefficients of the error correction term.

RESULTS

Assessing the impact of telecommunication and oil sectors on gross domestic product is the main concern of this paper. Thus, in this section the paper presents the results of ADF test, Johannsen co-integration test and VECM and their interpretation thereof. Also, the time plots of the series were also presented in this section.

4,000 2,000 0

1985

1990

1995

2000

Figure 3: Graph of Telecommunication

2005

2010

2015

2020

DOI: 10.56892/bima.v7i01.411

The line graph of GDP. oil and telecommunication sector are presented in figure 1, 2 and 3. It is observed that GDP exhibit a positive growth while oil sector exhibit a positive growth between 1981 to 2013 and negative growth between 2013 to 2021. On the other hand, the telecommunication sector exhibits a flat output between 1981 to 2000 and positive growth pattern between 2000 to 2021.

Γał	ole	1:	Summary	Statistics	Results
-----	-----	----	---------	------------	---------

	GDP	Oil Sector	Telcom Sector			
Mean	37119.15	97.69232	2747.250			
Median	8150.020	31.31405	52.01000			
Maximum	173527.7	412.3000	14119.35			
Minimum	137.9300	0.050000	0.360000			
Std. Dev.	49833.52	119.9785	4226.896			
Skewness	1.281870	1.005605	1.340857			
Kurtosis	3.447140	2.873555	3.512113			
Jarque-Bera	11.57003	6.937466	12.73365			
Probability	0.003073	0.031156	0.001718			
Sum	1521885.	4005.385	112637.3			
Sum Sq. Dev.	9.93E+10	575794.1	7.15E+08			
Observations	41	41	41			
Source: E-EVIEWS 10 output						

Table 2: Unit Root Test Results						
Augmented Dickey Fuller Test Variable t – statistics Critical Values p-value Remark						
		1%	5%	10%	I	
GDP	4.5140	-4.2050	-3.5267	-3.1946	1.0000	Not stationary
∆GDP	-3.8710	-4.2119	-3.5298	-3.1964	0.0230	Stationary
OIL	-1.1953	-3.6056	-2.9369	-2.6069	0.6672	Not Stationary
ΔOIL	-6.0105	-3.6105	-2.9390	-2.6079	0.0000	Stationary
TELCOM	0.9217	-4.2050	-3.5266	-3.1946	0.9998	Not Stationary
ΔTELCOM	-5.9404	-4.2119	-3.5298	-3.1964	0.0001	Stationary
		Phi	lip's Perro	n Test		
Variable	t – statistics	С	ritical Valu	ies	p-value	Remark
		1%	5%	10%		
GDP	6.1565	-4.2050	-3.5266	-3.1946	1.000	Not Stationary
ΔGDP	-3.9246	-4.2119	-3.5298	-3.1964	0.0203	Stationary
OIL	-1.0235	-4.2050	-3.5266	-3.1946	0.9291	Not Stationary
ΔOIL	-6.1901	-4.2119	-3.5298	-3.1964	0.0000	Stationary
TELCOM	1.74432	-4.2050	-3.5266	-3.1946	1.0000	Not Stationary
ΔTELCOM	-5.9384	-4.2119	-3.5298	-3.1964	0.0001	Stationary

Source: E-EVIEWS 10 output

ΔTELCOM -5.9384

Table 3: Johannsen Co-Integration Test Results

Unrestricted Cointegration Rank Test (Trace)						
Hypothesized		Trace	0.05			
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**		
None *	0.931437	115.9247	29.79707	0.0000		
At most 1 *	0.416476	19.44466	15.49471	0.0120		
At most 2	0.001459	0.052561	3.841466	0.8186		

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.931437	96.48002	21.13162	0.0000
At most 1 *	0.416476	19.39210	14.26460	0.0071
At most 2	0.001459	0.052561	3.841466	0.8186

Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level Source: E-EVIEWS 10 output

	Table 4: VAR Lag Order Selection Criteria						
Lag	LogL	LR	FPE	AIC	SC	HQ	
0	-806.8120	NA	9.83e+18	52.24593	52.38471	52.29117	
1	-675.4355	228.8493	3.68e+15	44.35068	44.90577	44.53162	
2	-667.6869	11.99776	4.07e+15	44.43142	45.40283	44.74807	
3	-657.1007	14.34271	3.85e+15	44.32907	45.71680	44.78144	
4	-623.7424	38.73868	8.79e+14	42.75757	44.56162	43.34565	
5	-585.7095	36.80596	1.59e+14	40.88449	43.10485	41.60827	
6	-541.7056	34.06754	2.19e+13	38.62617	41.26286	39.48566	
7	-492.8479	28.36903	2.64e+12	36.05470	39.10771	37.04990	
8	-430.5731	24.10636	1.89e+11	32.61762	36.08694	33.74853	
9	-316.7019	22.03959*	1.14e+09*	25.85174	29.73738	27.11836	
10	1376.102	0.000000	NA	-82.78080*	-78.47884*	-81.37847*	

DOI: 10.56892/bima.v7i01.411 **Table 4:** VAR Lag Order Selection Criteria

Source: E-EVIEWS 10 output

The results of unit root test, Johannsen Co-Integration Test Results and VAR lag order selection criteria were presented in Table 2, 3 and 4 respectively. The unit root test results in Table 2 indicates that the series are stationary at first difference that is integrated of order one. The co-integration results both Trace and Max-eigenvalue test indicates 2 cointegrating equations. Since the variables are stationary at first difference and cointegration exists, provides the justification for estimating the long and short run relationship using Vector Error Correction model. The AIC, SC and HQ lag order selection criteria in Table 4 indicates the optimal lag to be 10.

 Table 5: Long run Relationship Estimate

Variable	Coefficient	Std error	t- statistic	Remark			
Oil sector	1085.357	104.157	10.420	Significant			
Telcom sector	-29.748	4.025	7.391	Significant			
Constant	-1058.373			-			
10							

Source: E-EVIEWS 10 output

Dependent Variable: GDP

Table 6	Table 6: Short run Relationship Estimate						
Variable	Coefficient	t-statistics	P-value				
ECT(-1)	-0.1440	-2.5275	0.0160***				
D(GDP(-1))	0.1300	0.2832	0.7790				
D(GDP(-2))	1.6047	3.8598	0.0006^{***}				
D(GDP(-3))	-0.5236	-1.0218	0.3150				
D(GDP(-4))	0.8215	1.3970	0.1727				
D(GDP(-5))	-1.2687	-1.5276	0.1371				
D(GDP(-6))	1.9706	3.4198	0.0018***				
D(GDP(-7))	0.3351	0.2526	0.8023				
D(Oil-Sector(-1))	-164.9960	-0.6229	0.5380				
D(Oil-Sector(-2))	-135.9293	-0.4622	0.6473				
D(Oil-Sector(-3))	-197.5039	-0.6000	0.5530				
D(Oil-Sector(-4))	-82.8944	-0.2535	0.8016				
D(Oil-Sector(-5))	-170.8749	-0.6031	0.5510				
D(Oil-Sector(-6))	-147.9822	-0.5796	0.5665				

Bima Journal of Science and Technology, Vol. 7 (2) June, 2023 ISSN: 2536-6041

	5	Ą			
PR	INU	S INT	ERPI	RES	•

DC	DI: 10.56892/bin	na.v7i01.411	
D(Oil-Sector(-7))	-259.4736	-2.0300	0.0513**
D(Oil-Sector (-1)	6.3110	0.9463	0.3516
D(Oil-Sector (-2)	-2.8852	-0.6959	0.4918
D(Oil-Sector (-3)	3.0305	0.9831	0.3334
D(Oil-Sector (-4)	-0.7808	-0.3709	0.7133
D(Oil-Sector (-5)	0.7285	0.2048	0.8391
D(Oil-Sector (-6)	0.4796	0.0703	0.9444
D(Oil-Sector (-7)	-0.9072	-0.1332	0.8949
Constant	203.3537	0.4272	0.6723
R-square	0.9930		
Adjusted R-			
square	0.9779		
F-statistics	652651		

Source: E-EVIEWS 10 output

Dependent Variable: GDP

Note: **p*<0.10, ***p*<0.05, ****p*<0.01 and ^{ns} not significant

Fable 7: VEC Granger Causality/Block Exogeneity Wald	Tests
---	-------

Excluded	Chi-sq	df	Prob.
D(OIL_SECTOR)	59.64845	7	0.0000
D(TELCOM_SECTOR)	79.26489	7	0.0000

Source: E-EVIEWS 10 output

Dependent variable: D(GDP)

 Table 8: Variance Decomposition of GDP

Period	S.E.	GDP	OIL_SECTOR	TELCOM_SECTOR
1	793.7750	100.0000	0.000000	0.000000
2	1191.576	96.11194	0.185944	3.702111
3	2143.496	94.19551	0.309573	5.494914
4	2944.941	78.35800	0.374278	21.26772
5	3954.252	54.56747	0.639092	44.79344
6	4903.493	37.38527	1.248693	61.36604
7	5427.771	33.16038	1.516376	65.32325
8	5708.069	31.28267	1.375193	67.34214
9	10243.24	30.10172	0.480553	69.41773
10	19699.89	33.39136	0.291204	66.31743

Source: E-EVIEWS 10 output

The results of the long run estimates, short run estimate, VEC Granger Causality/Block Exogeneity Wald Tests and Variance Decomposition of GDP were presented in Table 5, 6, 7 and 8 respectively. The coefficients of the long run relationship revealed that oil sector has significant and positive impact on gross domestic product in the long run while telecommunication sector has significant and negative impact on gross domestic product in the long run.

The Error Correction Model ECM(-1) portrays the speed of adjustment required to restore equilibrium in the dynamic model from an innovation. It affirms a priori expectation as it's coefficient is negative and has a p-value that is statistically significant at 5% level. Its value of -0.1440 implies that an impulse to gross domestic product in the current period will be restored at a speed of adjustment of about 14.4% in the next period. This implies that 14.4% of the short-run disequilibrium is corrected annually.

The R-squared (0.9930) indicates that the explanatory variables explains 99.3% of the variations in gross domestic product while the remaining 0.7% is explained by other factors not considered in the model. This is quite high and presents a good fit of the model. The lag 2 and 6 value of GDP has significant and positive impact on the current values of GDP in the short run (p < 0.05). This implies that increase values of GDP in the previous years tend to increase current level of GDP by 1.6047 and 1.9706 respectively. Also, the lag 7 value of oil sector has significant and negative impact on current level of GDP in the short run. This implies that increase in oil sector tend to decrease gross domestic product by 259.4736 in the short run.

The result of VECM Granger Casualty in Table revealed Oil 7 that and Telecommunication sectors Granger cause GDP since their p-value < 0.05. Table 8 shows that at period 10 GDP explained itself by 33.4% while Oil and Telecommunication explained GDP by 0.3% and 66.3% respectively.

Residual Diagnostic Testing

Table 9: VEC Residual Normality Tests

Component	Jarque-Bera	Df	Prob.	
1	13.88491	2	0.0010	
2	35.42221	2	0.0000	
3	4.571393	2	0.1017	
Joint	53.87852	6	0.0000	
Source: E-EVIEWS 10 output				

Table 10: VEC Residual Serial Correlation LM Tests

Lag	LRE* stat	df	Prob.	Rao F- stat	df	Prob.
1	23.13951	9	0.0059	4.541403	(9, 12.3)	0.0082
2	13.04266	9	0.1607	1.753023	(9, 12.3)	0.1778
3	24.97590	9	0.0030	5.268900	(9, 12.3)	0.0044
4	17.64937	9	0.0395	2.808338	(9, 12.3)	0.0477
5	9.115867	9	0.4266	1.066787	(9, 12.3)	0.4465
6	17.97332	9	0.0355	2.894758	(9, 12.3)	0.0432
7	23.67154	9	0.0049	4.743552	(9, 12.3)	0.0068
8	13.03557	9	0.1610	1.751623	(9, 12.3)	0.1781

Source: E-EVIEWS 10 output

 Table 11: VEC Residual Heteroskedasticity

 Tests

Joint test:				
Chi-sq	df	Prob.		
209.8746	192	0.1790		
Comment E EVIEWC 10 contract				

Source: E-EVIEWS 10 output

The results of residual diagnostic test (VECM residual Normality, serial correlation LM, heteroskedasticity test) were presented in Table 9, 10 and 11 respectively. The results as presented in Table 9 indicates that the residuals are normally distributed at 3^{rd} component (p-value = > 0.05). Also, table 10 reveals that there is no serial correlation in the residual of the estimated VECM model at lag 2, 5 and 8 (p-value > 0.05). Furthermore, table 11 revealed that the variance of the residuals of the estimated VECM model are constant (p-value = 0.1790 > 0.05). This implies that there is no evidence of

Bima Journal of Science and Technology, Vol. 7 (2) June, 2023 ISSN: 2536-6041

DOI: 10.56892/bima.v7i01.411

Heteroskedasticity in the residuals of the estimated model.

CONCLUSION AND RECOMMENDATIONS

The unit root test using ADF revealed that all under investigation variables are not stationary. However, becomes stationary at first difference. Johannsen cointegration test showed an existence of 2 cointegrating equations, which is indicated by both the trace and maximum eigenvalue test. The results of the VECM revealed that oil sector has significant positive impact on gross domestic product in the long run. However, telecommunication sector has negative and significant impact on gross domestic product in the long run. The ECT affirms a priori expectation as the coefficient is negative and has a p-value that is statistically significant at 5% level. The ECT of -0.1440 implies that an impulse to gross domestic product in the current period will be restored at a speed of adjustment of about 14.4% in the next period. Thus, this study concludes that oil and telecommunication sectors have positive and significant impact on gross domestic product in Nigeria for the study period.

Based on these findings, it was recommended that government should implement and be consistent with policies that would bring about sustainable growth in the telecommunication sector which will in turn contribute positively to gross domestic product. It was recommended also that government should reexamine its telecommunication of sector bv wav increasing tax base and introducing new taxes in such a way that it does not distort the working of the economy but to increase the economic growth.

REFERENCES

Abdulrahman, B. M. A. (2021). Oil and non-

oil export and its impact on economic performance in Saudi Arabia. *International journal of energy economics and policy*, 11(1), 88 - 92.

- Akinleye, G. T., Olowookere, J. K., & Fajuyagbe, S. B. (2021). The impact of oil revenue on economic growth in Nigeria (1981-2018). Acta Universitatis Danubius. Œconomica, 17(3).
- Akinwale, O. Y., Sanusi, A., & Surujlal, J. (2018). An empirical analysis of and information communication technology (ICT) and economic Nigeria. growth in International Journal of *eBusiness* and *eGovernment Studies*, 10(1), 129-142.
- Alugbuo, J. C., & Eze, E. (2021). A Correlational and descriptive study on the economic effect of telecommunication industry in Nigeria. *International Journal of Research and Innovation in Social Science*, 5(5), 423-431.
- Asogwa, F. O., Ohaleme, K. K., & Ugwuanyi,
 R. O. (2013). The impact of telecommunication expenditure on economic growth in Nigeria. *Journal of Economics and Sustainable Development*, 4(13), 40-45.
- Awoleye, O. M., Okogun, O. A., Ojuloge, B.
 A., Atoyebi, M. K., & Ojo, B. F.
 (2012). Socio-economic effect of telecommunication growth in Nigeria:
 An exploratory study. *Interdisciplinary Journal of Contemporary Research in Business*, 4(2), 256-262.
- Awoleye, O. M., Okogun, O. A., Ojuloge, B.
 A., Atoyebi, M. K., & Ojo, B. F.
 (2012). Socio- economic effect of telecommunication growth in Nigeria:
 An exploratory study. Interdisciplinary Journal of Contemporary Research in

NO INTER OTRE

Business, 4(2), 256-262.

- Ebimobowei, A. (2022). Oil Revenue and Economic Growth of Nigeria: 1990– 2019. Journal: African Journal of Economics and Sustainable Development, (1), 17-46.
- HDI (2021). Nigeria's ranking in UN Human Development unchanged in 2021.
- Ilori, F., & Akinwunmi, A. (2020). Comprehensive analysis of the effect of oil and non-oil revenues on economic development in Nigeria. *International Journal of Accounting Research*, 5(3), 93-106.
- Masood, S. (2012). The Telecommunications (ICT) Investment and Economic growth (GDP): A causality analysiscase study of Sweden.
- Matalqah, M. M., & Warad, T. M. (2017). The impact of telecom infrastructure on the economic growth: The case of oil-producing and non-oil producing Arab Countries. *International journal* of economics and financial issues, 7(3), 423-428.
- Olowo, S. O., Daramola, K. O., Ogunsanwo, O. F., & Edewusi, D. G. (2020). Sectorial Contributions of Non-Oil

Revenue to Economic Growth in Nigeria. *Open Access Library Journal*, 7(8), 1-21.

- Onuoha, D. O., Ibe, A., Njoku, C. U., & Onuoha, J. I. (2015). Analysis of The Gross Domestic Product (GDP) of Nigeria: 1960-2012. West African Journal of Industrial and Academic Research, 14(1), 81-90.
- Oyeniran, W. I., & Onikosi-Alliyu, S. (2016). Information and telecommunication infrastructure and economic growth: An experience from Nigeria. *Serbian Journal of management*, 11(2), 275-289.
- Riti, J. S., Gubak, H. D., & Madina, D. A. (2016). Growth of non-oil sectors: A key to diversification and economic performance in Nigeria. *Public policy* and administration research, 6(3), 64 – 75.
- Sajjad H.S. (2017). Telecom and its impact over the economic development of SAARC Countries. *International research journal*, 3(1): 114 – 124.
- UNDP, HDI (2011). Sustainability and Equity: A better future for all.

.