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ABSTRACT

In this paper, the shape parameter of the Generalized Inverse Exponential Distribution (GIED)
was estimated using both maximum likelihood and Bayesian estimation techniques. The Bayes
estimates are obtained using squared error loss function and precautionary loss function by
considering Uniform prior, Jeffery’s prior and Extended Jeffery’s prior. Thus the study
considered these three priors under the square error loss function and also the same three priors
under precautionary loss function to derive the estimators for the shape parameter. The estimator
with minimum posterior risk and mean square error (MSE) as criteria is selected as the best. To
achieve this, an extensive Markov Chain Monte Carlo (MCMC) simulation study was carried out
to compare the performances of the Bayes and maximum likelihood estimates at different sample
sizes. Based on mean square error (MSE), the results reveal that the Bayes estimates performed
better than maximum likelihood estimates. Based on posterior risk, Bayes estimates using Square
Error Loss Function under the Extended Jeffery’s Prior (SELFEXJ) performed best among the
six non-informative priors considered under different sample sizes. Hence the Bayes estimate
under the Extended Jeffrey’s using the squared error loss function has the best estimator for
estimating the shape parameter of the model.
Keywords: Bayesian Methods, Maximum Likelihood, Loss Functions, Posterior Risks, Mean
Square Error.

INTRODUCTION
In the past, many generalized univariate
continuous distributions have been proposed
in literature. The generalization of these
distributions is important in order to make
their shape more flexible to capture the
diversity present in the observed dataset. One
of such generalizations is the Generalized
Inverse exponential distribution (GIED)
proposed by Abouammoh and Alshangiti
(2009). In their work, they added shape
parameter to make the distribution more
flexible; and as a result, the parameter has to
be estimated using the appropriate estimation
technique. Maximum likelihood estimation
and least squares estimation are used to
estimate the parameters and reliability of the
distribution Properties of the estimates are
also studied. Krishna and Kumar (2013)

studied Reliability estimation in generalized
inverted exponential distribution with
progressively type II censored sample,
generalization of inverted exponential
distribution was considered as a lifetime
model.
Numerous researchers have estimated the
parameters of different distributions using the
Bayesian technique because of its advantage
over other methods of estimation. Some of the
researches include: the work of Farhad et al.
(2013) studied the classical and Bayesian
approach of estimating the scale parameter of
Inverse Weibull distribution when the shape
parameter was known under the assumption
of quasi, gamma and uniform priors using
square error loss function, entropy loss
function and precautionary loss function. Dey
(2015) studied Inverse Rayleigh Distribution

mailto:rogundeji@unilag.edu.ng


DOI: 10.56892/bima.v7i01.390

Bima Journal of Science and Technology, Vol. 7 (1) Mar, 2023 ISSN: 2536-6041

89

using Bayesian estimation technique for the
parameter estimates. Feroze (2012) discussed
the Bayesian analysis of the scale parameter
of inverse Gaussian distribution using
different priors and loss functions. Yahgmaei
et al., (2013) proposed classical and Bayesian
approaches for estimating the scale parameter
in the Inverse Weibull Distribution when
shape parameter is known.
Azam and Ahmed (2014) and Eraikhuemen,
et al. (2020) respectively estimated the scale
and shape parameter of Nakagami
Distribution using Bayesian approach. The
study revealed that the scale parameter was
estimated under three prior distributions,
namely; Uniform, Inverse Exponential and
Levy priors and three loss functions namely;
Squared Error Loss Function, Quadratic Loss
Function and Precautionary Loss Function.
Nasir et al., (2015) studied Bayesian
estimation of the scale parameter of log
logistic distribution using square error loss
function, precautionary loss function, simple
precautionary loss function and weighted loss
function with two non-informative priors
(uniform and Jeffery priors). Kaisar et al
(2016) studied the classical and Bayesian
approach of scale parameter of Nakagami
distribution under the assumption of Jeffrey,
Extended Jeffrey and Quasi priors using
quadratic, Al-Bayyati and entropy loss
functions. The estimate of the scale parameter
using simulated data set was obtained. Sanku
Dey (2007) derived Bayes estimators for the
parameters of inverted exponential
distribution. These estimators are obtained on
the basis of squared error and LINEX loss
functions.
The focus of this paper is to apply the
Bayesian method of estimating the shape
parameter of generalized inverse exponential
distribution under non-informative priors
(Jeffery prior, uniform prior, extended
Jeffery’s prior) using two loss functions. Prior

distributions play very crucial roles in
Bayesian probability theory as it is attractive
to have conditional distributions that have a
closed form under sampling (Ogundeji et al.,
2018). An extensive Monte Carlo simulation
was carried out to obtain and compare the
performance of the different estimators for
different sample sizes (n = 15, 35, 75 and 100)
against different shape parameter (β) values of
0.5, 1.0, 1.5 and 2.0 with the assumption that
the scale parameter is known. The Markov
Chain Monte Carlo (MCMC) method is used
to generate a process that moves through a
large model space in order to adequately
identify the high posterior probability models
to average and generate parameter estimates
(Ogundeji et al., 2022). The shape parameter
of the Generalized Inverse Exponential
Distribution (GIED) was also estimated using
maximum likelihood and Bayesian estimation
techniques. The Bayes estimates were
obtained under the squared error function and
precautionary loss function under the
assumption of three non-informative priors.
The paper is organized as follows: section 2
defines the Generalized Inverse Exponential
Distribution (GIED) model, the two loss
functions applied, respective expressions for
computations of maximum likelihood and
Bayes estimates and their posterior risks.
Section 3 contains Monte Carlo simulation
analysis of the data, while section 4 consists
of the discussion of the results and section 5
concludes the study.

MATERIALS AND METHODS
The Generalized Inverse Exponential
Distribution, GIED (λ, ) with cumulative
density function (CDF) is expressed as
follows (Sanjay et al., 2013):

  xexF /11)(  ; 0,0,0  x (1)
and the probability density function (pdf) is
given by:
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The estimation of the shape parameter of
generalized inverse exponential distribution
using maximum likelihood and Bayesian
estimation techniques is studied and
implemented. Under the Bayesian approach,
three non-informative priors (uniform prior,
Jeffery’s prior and extended Jeffery prior)
were considered. Two loss functions (square
error loss function and precautionary loss
function) were considered in estimating the
posterior distribution of the shape parameter
(Sule and Adegoke, 2020):
The squared error loss function (SELF) is
given as:
   2,ˆ,ˆ  clsq  (3)

The risk function under square-error loss
function is given as:

     2

0

ˆ ˆ |RSQ iR c x     


  ; i = 1, 2, 3.

(4)
The Precautionary Loss Function (PLF) is
given as:

   


ˆ
,ˆ,ˆ

2clPLF  (5)

The risk function under precautionary loss
function is given as:

     
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
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 ; i = 1, 2, 3.

(6)
After deriving the posterior distribution, the
two loss functions, were employed to derive
the estimators for the shape parameter. An
efficient estimator is selected using the
posterior risk and mean square error (MSE)
criteria. Thus, the estimator with the
minimum estimate is considered to be a better
estimator of shape parameter of generalized
inverse exponential distribution.

Estimation Methods of GIED
Maximum likelihood estimation (MLE)
Given the PDF of GIED in eqn (2) above, the
maximum likelihood estimate is the value of
the statistic which maximizes the likelihood
function and it is obtained as (Abouammoh
and Alshangiti, 2009):
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Differentiating eqn (7) with respect to β and
setting it to zero:
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Solving for β in eqn (7), gives:
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which can also be expressed as;
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Bayes Estimation (MCMC)
In Bayesian analysis, posterior distribution
summarises what we know about uncertain
quantities. It is a combination of the prior
distribution and the likelihood function. Prior
and posterior distributions play very crucial
roles in Bayesian probability theory as it is
attractive to have conditional distributions
that have a closed form under sampling
(Ogundeji and Adeleke, 2020; Aliyu and
Abubakar, 2016). Bayesian estimation
technique will be used to estimate the shape
parameter of the GEID under three different
priors and two loss functions.
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Square error loss function under the
uniform prior (SELFU)
Bayes estimator of  relative to squared error
loss function under uniform prior is obtained
as:

     2
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The posterior risk is:
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Precautionary Loss Function under
Uniform Prior (PLFU)

The Bayes estimator of  denoted by p̂
relative to Precautionary loss function (PLF)
is given as:

  2
1

2 /ˆ xEp   (14)
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


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Expression (14) can be obtained by
minimizing the expected loss     ˆ,LE over
 with respect to the posterior distribution
  xp / i.e.
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Integrating eqn (16), we obtained the
posterior risk as:
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Square Error Loss Function under the
Jeffrey’s Prior (SELFJ)

Bayes estimator of  relative to squared error
loss function under Jeffrey’s prior is obtained
as;
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Integrating eqn (18), w.r.t β we obtained the
posterior risk as;

    22 // xExEBPRselfj   (19)

Precautionary Loss Function under
Jeffrey’s Prior (PLFJ)
Bayes estimator of  relative to
precautionary loss function under the
Jeffrey’s prior is obtained as;
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The posterior risk is obtained as
 

N
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Square Error Loss Function under the
Extended Prior (SELFEXJ)
Bayes estimator of  relative to squared error
loss function under extended Jeffrey’s prior is
obtained as;
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The posterior risk is obtained as:

2

12ˆ
N
rn

selfex


 (23)

Precautionary Loss Function under
Extended Prior (PLFEXJ)
Bayes estimator of  relative to
precautionary loss function under extended
Jeffrey’s prior is obtained as;
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The posterior risk is obtained as











 


N
rnrnrn

PRplfex

)12()22()12(
2 (25)



DOI: 10.56892/bima.v7i01.390

Bima Journal of Science and Technology, Vol. 7 (1) Mar, 2023 ISSN: 2536-6041

92

RESULTS OF MARKOV CHAIN
MONTE CARLO (MCMC)
SIMULATION ANALYSIS

An extensive Monte Carlo simulation was
carried out to obtain and compare the
performance of the different estimators for
different sample sizes (n = 15, 35, 75 and 100)
against different initial values of the shape
parameter (β) values of 0.5, 1.0, 1.5 and 2.0
with the assumption that the scale parameter
is known. The Monte Carlo simulation were
replicated 10,000 times and averaged over. To
examine the performance of Bayes estimates
for the shape parameter of GIED under the
two loss functions, estimates are presented
along with respective posterior risks and their
MSC in Tables below. The shape parameter
of the Generalized Inverse Exponential

Distribution (GIED) was also estimated using
maximum likelihood (ML). Under the Bayes
estimates were six estimators using the
squared error function and precautionary loss
function under the assumption of three non-
informative priors. The six different Bayes
estimators that were considered are: Square
Error Loss Function under the Uniform Prior
(SELFU), Square Error Loss Function under
the Jeffrey’s Prior (SELFJ), Square Error
Loss Function under the Extended Jeffrey’s
Prior (SELFEXJ), Precautionary Loss
Function under Uniform Prior (PLFU),
Precautionary Loss Function under Jeffrey’s
Prior (PLFJ), and Precautionary Loss
Function under Extended Jeffrey’s Prior
(PLFEXJ). Tables 1, 2, 3 and 4 show the
Monte Carlo simulation results based on these
estimators by way of simulation.

Table 1:Maximum Likelihood and Bayes Average Estimates of Shape Parameter (asterisk),
Posterior Risk (Parenthesis) and MSE (Bolded) for n = 15

� Method β = 0.5 β = 1.0 β = 1.5 β = 2.0

15

ML

Bayes:
(i) SELFU

(ii) SELFJ

(iii) SELFEXJ

(iv) PLFU

(v) PLFJ

(vi) PLFEXJ

0.5349772*
0.02673302

0.5706424*
(0.02191433)
0.0393622
0.5349772*
(0.02054469)
0.02673302
0.4279818*

0.01408988
0.5882047*
(0.03512464)
0.42772846
0.5525221*
(0.03508975)
0.03222176
0.4454576*
(0.03495156)
0.01445734

1.069954*
0.10693201

1.141285*
(0.08765733)
0.1574489
1.069954*
(0.08217874)
0.10693201
0.8559636*

0.05635951
1.1764090*
(0.07024929)
0.19051321
1.1050440*
(0.07017951)
0.12888698
0.8909151*
(0.06990312)
0.05782933

1.604932*
0.24059733

1.711927*
(0.197229)
0.3542597
1.604932*
(0.1849022)
0.24059733
1.283945*
(0.1479217)
0.12680883
1.7646140*
(0.1053739)
0.42865497
1.6575660*
(0.1052693)
0.28999571
1.336373*
(0.1048547)
0.13011607

2.139909*
0.42772846

2.282569*
(0.3506293)
0.6297949
2.139909*
(0.328715)
0.42772846
1.711927*
(0.262972)
0.22543800
2.352819*
(0.1404986)
0.76205349
2.210088*
(0.140359)
0.51554793
1.78183*
(0.1398062)
0.23131728
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Table 2:Maximum Likelihood and Bayes Average Estimates of Shape Parameter (asterisk),
Posterior Risk (Parenthesis) and MSE (Bolded) for n = 35.

� Method β = 0.5 β = 1.0 β = 1.5 β = 2.0

35

ML

Bayes:
(i) SELFU

(ii) SELFJ

(iii) SELFEXJ

(iv) PLFU

(v) PLFJ

(vi) PLFEXJ

0.5143571
0.008724456

0.5290531*
(0.00800992)
0.01047743
0.5143571*
(0.00778742)
0.008724456
0.4702694*
(0.007119929)
0.006701615
0.5363507*
(0.01459526)
0.0115956
0.5216534*
(0.01459242)
0.009515161
0.4775608*
(0.01458287)
0.006759375

1.028714
0.034897810

1.058106*
(0.03203968)
0.04190972
1.028714*
(0.03114969)
0.034897810
0.9405388*
(0.02847971)
0.026806461
1.0727010*
(0.02919051)
0.04638238
1.0433070*
(0.02918484)
0.038060660
0.9551217*
(0.02916573)
0.027037507

1.543071
0.078520071

1.587159*
(0.07208928)
0.09429688
1.543071*
(0.0700868)
0.078520071
1.410808*
(0.06407936)
0.060314521
1.6090520*
(0.04378577)
0.10436042
1.564960*
(0.04377726)
0.085636431
1.4326820*
(0.0437486)
0.060834343

2.057429
0.139591374

2.116212*
(0.1281587)
0.16763889
2.057429*
(0.1245987)
0.139591371
1.881078*

0.107225891
2.1454030*
(0.05838103)
0.18552970
2.0866130*
(0.05836968)
0.152242495
1.9102430*
(0.05833147)
0.108149982

Table 3:Maximum Likelihood and Bayes Average Estimates of Shape Parameter (asterisk),
Posterior Risk (Parenthesis) and MSE (Bolded) for n = 75

� Method β = 0.5 β = 1.0 β = 1.5 β = 2.0

75

ML

Bayes:
(i) SELFU

(ii) SELFJ

(iii) SELFEXJ

(iv) PLFU

(v) PLFJ

(vi) PLFEXJ

0.5064477
0.003655993

0.5132003*
(0.00351191)
0.003997911
0.5064477*
(0.00346570)
0.003655993
0.4861898*

0.003238089
0.5165656*
(0.00673056)
0.004210489
0.5098128*
(0.00673027)
0.003812596
0.4895545*
(0.006729351)
0.003249865

1.012895
0.014623960

1.0264010*
(0.01404767)
0.015991655
1.0128950*
(0.01386284)
0.014623960
0.9723796*

0.012952357
1.033131*
(0.01346114)
0.016841948
1.019626*
(0.01346055)
0.015250396
0.9791089*
(0.0134587)
0.012999459

1.519343
0.032903932

1.5396010*
(0.03160727)
0.035981200
1.519343*
(0.03119138)
0.032903932
1.458569*

0.029142788
1.549697*
(0.0201917)
0.037894408
1.529438*
(0.02019083)
0.034313347
1.468663*
(0.02018805)
0.029248768

2.025971
0.058495899

2.0528010*
(0.0561907)
0.063966556
2.0257910*
(0.05545134)
0.058495899
1.944759*

0.051809418
2.066262*
(0.02692227)
0.067367793
2.039251*
(0.0269211)
0.061001525
1.958218*
(0.0269174)
0.051997846
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Table 4:Maximum Likelihood and Bayes Average Estimates of Shape Parameter (asterisk),
Posterior Risk (Parenthesis) and MSE (Bolded) for n = 100.

n Method β = 0.5 β = 1.0 β = 1.5 β = 2.0

100

ML

Bayes;
(i) SELFU

(ii) SELFJ

(iii) SELFEXJ

(iv) PLFU

(v) PLFJ

(vi) PLFEXJ

0.5049245
0.002680352

0.5099738*
(0.00260078)
0.002868258
0.5049245*
(0.00257503)
0.002680352
0.4897768*

0.002447768
0.5124922*
(0.00503680)
0.002984406
0.5074429*
(0.00503668)
0.002766707
0.492295*
(0.005036299)
0.022088708

1.009849
0.010721407

1.019948*
(0.01040314)
0.011473041
1.009849*
(0.01030014)
0.010721407
0.9795536(

0.009791073
1.024984*
(0.01007362)
0.011937613
1.014886*
(0.01007337)
0.11066834
0.9845899*
(0.0100726)
0.009817201

1.514774
0.024123181

1.529921*
(0.02340706)
0.025814308
1.514774*
(0.02317531)
0.024123181
1.469330*

0.022029903
1.537477*
(0.01511043)
0.026859665
1.522329*
(0.01511006)
0.024900377
1.4768850*
(0.0151089)
0.022088708

2.019698
0.042885627

2.039895(
(0.04161255)
0.045892118
2.019698*
(0.04120054)
0.042885627
1.959107*

0.039164286
2.049969*
(0.02014724)
0.047750500
2.029772*
(0.02014674)
0.044267337
1.969180*
(0.02014519)
0.039268814

DISCUSSION OF RESULTS
As expected, it was observed that the
performance of both the maximum likelihood
estimates (MLE) and the Bayes estimates
improve as the sample sizes increases. Also,
the maximum likelihood estimates (MLE) and
Bayes estimates becomes closer as the sample
size increases. It was observed that based on
mean square errors (MSE) only, the
SELFEXJ and PLFEXJ Bayes estimates
performed better than maximum likelihood
estimates. However, the SELFJ Bayes
estimates are equally efficient as the
Maximum Likelihood (ML) estimates having
same MSE.
When compared in terms of mean square
errors (MSE) and posterior risk, the estimates
were better at smaller values of β. Hence the
estimate is better at small value of β = 0.5.
The Extended Jeffrey’s prior tends to perform
better than the uniform and Jeffrey’s priors

when compared in terms of their mean square
errors (MSE) under both loss functions used.
The uniform prior under the Square Error
Loss Function (SELF) was observed to have
better estimate than the uniform prior under
the PLF at all sample sizes. The Extended
Jeffrey’s prior under the Square Error Loss
Function (SELF) was observed to have
performed better than the estimate of
Extended Jeffrey’s prior under the
Precautionary Loss Function (PLF).
Furthermore, the estimate of Jeffrey's prior
under the Square Error Loss Function (SELF)
performed better than the estimate of Jeffrey's
prior under the Precautionary Loss Function
(PLF).
Based on mean square error (MSE), the
results reveal that the Bayes estimates
performed better than maximum likelihood
estimates. It can also be observed that among
all the Bayes estimates, the Square Error Loss
Function (SELF) under the Extended Jeffrey’s



DOI: 10.56892/bima.v7i01.390

Bima Journal of Science and Technology, Vol. 7 (1) Mar, 2023 ISSN: 2536-6041

95

prior performed best compared with the other
estimates, since Square Error Loss Function
(SELF) under the Extended Jeffrey’s prior
have the minimum posterior risk and mean
square error.
As shown in graphs of mean square error
against sample size at different values of the
shape parameter (Figures 1, 2, 3 and 4), the
square error loss function under the extended
Jeffrey’s prior which is the black line have the
best estimates for all the values of β used.

Figure 1: Graphs of MSE against different
sample sizes of the Bayes estimates at β = 0.5

Figure 2: Graphs of MSE against different
sample sizes of the Bayes estimates at β = 1.0

Figure 3: Graphs of MSE against different
sample sizes of the Bayes estimates at β = 1.5

Figure 4: Graphs of MSE against different
sample sizes of the Bayes estimates at β = 2.0
Also, shown graphically below (Figures 5, 6,
7 and 8) are the 99% confidence bound of the
estimates obtained are from the Generalized
Inverse Exponential Distribution (GIED). It is
observed the actual shape parameter is within
the estimated confidence bounds.
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Figure 5: Graphs of the 99% confidence
bound against different sample sizes of the
Bayes estimates at β = 0.5

Figure 6: Graphs of the 99% confidence
bound against different sample sizes of the
Bayes estimates at β = 1.0

Figure 7: Graphs of the 99% confidence
bound against different sample sizes of the
Bayes estimates at β = 1.5

Figure 8: Graphs of the 99% confidence
bound against different sample sizes of the
Bayes estimates at β = 2.0

CONCLUSION
From the result of the analysis, it was
concluded;
i. The estimates become better as the
sample size increases and are better at smaller
value of the shape parameter (β).

ii. Based on mean square errors (MSE)
only, the SELFEXJ and PLFEXJ Bayes
estimates performed better than maximum
likelihood estimates. However, the SELFJ
Bayes estimates are equally efficient as the
Maximum Likelihood (ML) estimates having
same MSE.

iii. Among the non-informative priors
considered, the extended Jeffrey’s prior gives
the best estimates compared with the uniform
and Jeffrey’s priors based on the posterior
risks.

iv. Among all the Bayes estimates, the
Square Error Loss Function (SELF) under the
Extended Jeffrey’s prior performed best
compared with the other estimates, since
Square Error Loss Function (SELF) under the
Extended Jeffrey’s prior have the minimum
posterior risk and mean square error.
Therefore, the Square Error Loss Function
(SELF) under the extended Jeffrey’s prior has
an efficient estimator for estimating the shape
parameter of the Generalized Inverse
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Exponential Distribution. The outcomes of
this study is an improvement on the work of
Sule. and Adegoke (2020) and consistent with
the work of other authors in the same areas,
(Sanjay et al., 2013; Krishna and Kumar,
2013).
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