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ABSTRACT
Applied researchers are frequently faced with the issue of model uncertainty in situations where
many possible models exist. For large model space in regression analysis, the challenge has
always been how to select a single model among competing large model space when making
inferences. Bayesian Model Averaging (BMA) is a technique designed to help account for the
uncertainty inherent in the model selection process. Informative prior distributions related to a
natural conjugate prior specification are investigated under a limited choice of a single scalar
hyper parameter called g-prior which corresponds to the degree of prior uncertainty on
regression coefficients. This study focuses on situations with extremely large model space made
up of large set of regressors generated by a small number of observations, when estimating
model parameters. A set of g-prior structures in literature are considered with a view to identify
an improved g-prior specification for regression coefficients in Bayesian Model Averaging. The
study demonstrates the sensitivity of posterior results to the choice of g-prior on simulated data
and real-life data. Markov Chain Monte Carlo (MCMC) are used to generate a process which
moves through large model space to adequately identify the high posterior probability models
using the Markov Chain Monte Carlo Model Composition (MC3), a method applicable under
Bayesian Model Sampling (BMS). To assess the sensitivity and predictive ability of the g-priors,
predictive criteria like Log Predictive Score (LPS) and Log Marginal Likelihood (LML) are
employed. The results reveal a g-prior structure that exhibited equally competitive and
consistent predictive ability among considered g-prior structures in literature.
Keywords: Bayesian Model Averaging, Bayesian Model Sampling, Posterior Model Probability,
Predictive Performance, Zellner’s g-Priors.

INTRODUCTION
In regression analysis, picking a single model
among competing models tends to ignore the
uncertainty associated with the specification
of a selected model as a result of
overstatement of the strength of evidence via
p-values that are too small (Clyde and George,
2004). Thus, Box (1976) states that “all
models are wrong, but some are useful”,
while Einstein also said that “models should
be made as small as possible but not simpler”,
(Nielsen et al., 2014). Hence, applied

researchers are frequently faced with the issue
of model uncertainty in situations where many
possible models exist as a result of regressors
or predictors variables motivated by theory
that can be large, some over 40 regressors
which can cummulate into trillions of possible
models, (George, 2000). Thus, data analysts
are unsure of which of these regressors are
useful. To complicate the situation, the
numbers of observations available for analysis
are small or relatively limited (in some cases
often less than 100 observations or even less
than number of regressors).
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There are three major difficulties that arise
when putting the Bayesian approach into
practice in situation of large model spaces: the
choice of the prior distributions; the
computation of the integrated likelihood and
the estimation of τ (posterior distribution over
the model space), (García-donato and
Martínez-beneito, 2013). An alternative
approach to model selection is to compute a
weighted average of the estimates of all
competing models. This method which has
become attractive to many practitioners is
called model averaging and is able to
incorporate model uncertainty into the
analysis. Also, there has been increasing
interest in forecasting methods that utilise
large data sets and Bayesian Model Averaging
(BMA) methods have been widely employed
in this area (Feldkircher et al., 2013); (Clyde
and George, 2004). BMA is an appropriate
framework employed to control model
uncertainty by considering useful information
provided by all competing models in the set.
In BMA, posterior model probability is
applied as a measure to determine the
performance of each model in the set in
comparison with one another (Davison, 2008).
Prior distributions play very crucial roles in
Bayesian probability theory as it is attractive
to have conditional distributions that have a
closed form under sampling (Okafor, 1999);
(Lee, 2004). Agliari and Parisetti (1988),
Zellner (1983, 1986) proposed a procedure for
evaluating a conjugate prior distribution
referred to as Zellner’s informative g-prior, or
simply g-prior. The g-prior has been vastly
used in Bayesian analysis in multiple
regression models, due to the verity that
analytical results are more readily available,
better computational efficiency and its simple
interpretation (Rossi et al., 2005), (Liang et
al., 2008).
This study focuses on situations with
extremely large model space made up of large

set of regressors generated by a small number
of observations, when estimating model
parameters. The study demonstrates the
sensitivity of posterior results to the choice of
g-prior on simulated data and real-life data.
Markov Chain Monte Carlo (MCMC) are
used to generate a process which moves
through large model space to adequately
identify the high posterior probability models
using the “Markov Chain Monte Carlo Model
Composition” (MC3), a method applicable
under Bayesian Model Sampling (BMS). To
assess the predictive ability of the g-priors,
predictive criteria like Log Predictive Score
(LPS) and Log Marginal Likelihood (LML)
are employed.
The rest of the research is organized into three
sections. Section 2 examines the Zellner’s g-
prior properties, concepts of Bayesian Model
Averaging and predictive criteria employed;
Section 3 comprises the implementation of
discussed methods, results and discussion of
findings based on the simulated and real-life
data. The conclusion is contained in Section 4.

MATERIALS AND METHODS
Zellner’s g-prior Properties
Zellner’s g-priors applied in BMA analysis
fixes a constant g > 0 and specifies the
Gaussian Prior for the regression coefficients
β, conditional on σ2. Zellner’s g reduces the
elicitation of the covariance structure by
simply choosing the scalar g (Agliari and
Parisetti, 1988).
Assumed model:
Y = Xβ + ε (1)

with ),0(~ 2
nIN 

The likelihood:
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The Prior:
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The model (1) yields the maximum likelihood
estimate ̂ , which has variance
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Inference proceeds from the posterior
distribution:

� �, �2| � = � �, �2 � � �, �2)
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(7)

Where P(Y) = � �, �2 � � �, �2)� is
marginal likelihood of the data Y.
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Thus the parameter g allows for direct
weighting of the prior, β0, and data, ̂ . This
prior is known as Zellner’s informative g-
prior, or often referred to simply as” g-prior”.
The hyper parameter g embodies how certain
a researcher is that the coefficients are indeed
zero. The value of g corresponds to the degree
of prior uncertainty. The g-prior is not only
intuitive to use in the model and prior
definition, but also leads to familiar posterior
results (Zhang et al., 2008).
Two major considerations for Zellner’s g-
prior include:
Consistency: the choice of g such that
posterior model probabilities

(i) asymptotically uncover the “true model”, Mj.
That is,    nasYMP j 1| .

(ii) The importance of “g” as a penalty term
enforcing parameter parsimony factor

  21
sj kk

g


 .

Given g, it follows a t-distribution with

expected value ,ˆ
1

),,,|( jjj g
gMgXyE 




where j̂ is the standard OLS estimator for
the model j.
Different values of g (0 < g < ∞) have been
assigned in the context of estimation of the
regression coefficients of regressors and
model sampling from selection. This study
identified and considered some set of
candidate default
priors (Zellner’s informative g-prior that is
based on a sample of n observations and k
regression coefficients of independent
variables) advocated in literature (Eicher et al.,
2007), see Table 1.
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Table 1: Summary of Identified g-Prior

Structures Examined
Bayesian Model Averaging under Zellner's
g-Priors
One way to account for model uncertainty is
to allow all models to contribute to inference
by averaging. By averaging across a large set
of models one can determine those variables
which are relevant to the data generating
process for a given set of priors used in the
analysis. BMA requires a prior probability of
each model and a prior probability
distribution over the parameters of each
model (Montgomery et al., 2010). Once the
model space has been determined, the

posterior distribution of any coefficient of
interest (say h ), given the data D is:

     DMPMPDP j
j

jhh

k

|||
2

1



  .

(11)
BMA uses each model's posterior probability,
 DMP j | as weights. Each model (a set of

regressors) receives a weight and the final
estimates are constructed as a weighted
average of the parameter estimates from each
of the models. BMA includes all of the

S/N
Structure of
g-prior Comments and Sources

1 g = n
Unit Information Prior (UIP) based on number of observations. (Kass
and Wasserman, 1996).

2 g = max(n, K2)
Corresponds to the benchmark prior suggested by Fernandez, Ley and
Steel (2001b).

3 g = K2 Conforms to the risk inflation criterion by Foster and George (1994).

4 n
g 1
 It is in the spirit of the” unit information priors" of Kass and Wasserman

(1996).

5 n
kg  Here, we assign more information to the prior as we have more

regressors in the model (Hanson, 2014)

6 n
g 1


This is an intermediate case, where we choose a smaller asymptotic
penalty term for large models than in the Schwarz criterion. (Hanson,
2014)

7 n
kg  Suggested by FLS, where prior information increases with the number

of regressors in the model (Fernandez et al., 2001a).

8 )( 3nIng  Asymptotically mimics the Hannan-Quinn criterion with CHQ=3
(Fernandez et al., 2001, p.395)

9 )(
1

3nIn
g  The Hannan-Quinn criterion. CHQ=3 as n becomes large (Hannan and

Quinn, 1979).

10 )(
)1(

nIn
kIng 

 Prior information decreases even slower with sample size and there is
asymptotic convergence to the Hannan-Quinn criterion with CHQ = 1.

11 2

1
k

g  This prior is suggested by the risk inflation criterion (RIC). (Foster and
George, 1994).

12 k
ng  This prior is suggested for increased regressors generated with small

observations (Ogundeji et al., 2018)
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variables within the analysis, but shrinks the
impact of certain variables towards zero
through the model weights. These weights are
the key feature for estimation via BMA and
will depend upon a number of key features of
the averaging exercise including the choice of
prior specified (Raftery et al., 1993, 1997).
Prior Specification for Model Selection in
BMA
A key aspect of the problem is the uncertainty
about the choice of regressors i.e., model
uncertainty. This means that we need to
specify a prior distribution over the model
space of all 2k possible models:
P(Mj) = pj, j = 1, 2, … 2k with pj > 0 and





k

j
jp

2

1
1 (12)

The most common model prior in the
literature is the uniform distribution that
assigns equal prior probability to all models,
so that P(Mk) = 1/k for each k (Raftery, 1993,
1995) and (Yuan et al., 2005). This implies
that the prior probability of including a
regressor is 1/2k independently of the other
regressors included in the model.
Assessment of g-Priors using Predictive
Performance
To assess the predictive ability of the g-priors,
predictive criteria like Log Predictive Score
(LPS) and Log Marginal Likelihood (LML)
were employed.
Log Predictive Score (LPS)
The predictive ability of any model is
measured by the sum of the logarithm of the
posterior predictive ordinates for the
observations in the hold-out set. The log score
for any given model is the observed
coordinate of the predictive density given as:

  
 HD

T
k DMP


 ,|log , (13)

where  Tk DMP ,| is the posterior
predictive ordinate. The predictive log score
for BMA is then

)(LPS
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
The log predictive score is a proper scoring
rule for assessing predictive performance and
a smaller value of LPS makes a Bayes model
a prior choice for g that is preferable
(Fernandez et al., 2001b).
Log Marginal Likelihood (LML)
The marginal likelihood or the model
evidence is the probability of observing the
data given a specific model and is defined as:

       dMPMXPMXP |,||
(15)
If we have two models M1 and M2, then we
can compare the marginal likelihoods of each,
i.e., compare P(X |M1) to P(X |M2) and ask
which is better (i.e. larger), (Kass et al., 1995).
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In more than two models, the model with the
largest marginal likelihood is the best model.

RESULTS
Simulation Study
The effects of the set of g-priors were
examined using simulated dataset drawn from
multivariate normal distributions. Five groups
of dataset (11-variate, 21-variate, 31-variate,
41-variate, 51-variate and 61-variate) normal
random variable were simulated using R and
other statistical software (Martin and Stefan,
2013). The simulated study was carried out on
the basis of n = 40 observations with k = 10,
20, 30, 40, 50 and 60 set of regressors or
predictor variables (identified as X1, X2, . . . ,
X60 with a common response variable Y). The
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simulated dataset generated were organized as
shown in Table 2

Table 2: Summary Data frames of simulated dataset with regressors up to 60 (i.e. Quintillions of
models!)

Based on Posterior Inclusion Probability (PIP)
of the regressors under different g-prior
distributions applied, the results show
consistency in regressors identified as
significant in relationship with the dependent
variable across the different g-prior structures.
An overview of the result using simulated
data as reported above in Table 2 shows that
the LML for the twelfth g-prior structure at
the different model spaces are of the highest.
Real Life Data
The real life data for the implementation of
the sensitivity and predictive performance of
identified g-prior structures were obtained.
The real-life data was sourced from the
National Bureau of Statistics (NBS), 2012
annual reports on all official statistics on
socio-economic and macro-economic
indicators (literacy, unemployment rates,
interest rates, inflation etc.), various
machinery and tools that have been brought to
bear in improving the efficiency and
reliability of official statistics.
Data frames comprises of N = 72 observations
with k = 41 regressors or predictor variables,
cumulating into 2.20 x 1012 models (i.e.
Trillions of models!). Normalizing
transformations were made on the data sets to
make them multivariate normal, achieved by
the standardization of the data set and

removal of influential and extreme
observations.
Posterior Results for g-Priors Structures
Investigated
The effects of the set of g-priors using the
above datasets and model space were obtained
from the posterior results. To analyse these
data, uniform model prior was applied as the
model prior for the model space across
parameter g-prior structures investigated.
Given the model space 241 = 2.2 X 1012 (over
two trillions of models!) and with a fairly
large amount of drawings (5million), MC3

sampler is applied to adequately identify the
high posterior probability models. The
posterior results from a run with 5 million
drawings after a burn-in of 1 million
discarded drawings were obtained. The
posterior quantities include summary results
or output of the BMA analysis include
Posterior Inclusion Probabilities (PIP) of 41
regressors, corresponding Posterior Means
and Posterior Standard deviation of the
parameters estimates across the different
parameter g-priors examined. Predictive
abilities based on these real data under the
different choices of g-priors were examined
and compared using Log Predicted Scores
(LPS) and Log Marginal Likelihood (LML),
(see Tables 3 and 4).

Data Group
1 2 3 4 5 6

Dataset
11-variate 21-variate 31-variate 41-variate 51-variate 61-variate

Regressors
(k) 10 20 30 40 50 60

Model Space
(2k) 1024 1.05 x 106 1.07 x 109 1.10 x 1012 1.13 x 1015 1.15 x 1018
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Table 3: Predictive ability under different choices of g-priors examined using both LPS and
LML for the Normalised Real Life Data.

g-prior
Structures

Normalised
Real-life Data
LPS LML

S/N
n = 72,
k = 41

n = 72,
k = 41

1 g = n
g = 72 g = 72
-130.7 373.9

2 & 3

g = max (n, K2).
g = k2

g = 1681 g = 1681
-135.7 374

4
g = 0.013889 g = 0.013889
-119.7 329.3

5
g = 0.569444 g = 0.569444
-125.1 327.9

6
g = 0.117851 g = 0.117851
-120.8 328.8

7
g = 0.754615 g = 0.754615
-126.4 327.8

8
g = 12.83 g = 12.83
-140.2 344.5

9
g = 0.077942 g = 0.077942
-120.4 327.8

10
g = 0.873968 g = 0.873968
-127.1 329.3

11
g = 0.000595 g = 0.000595
-119.5 342.7

12
g = 11.24451 g = 11.24451
-140.1 383.9

An overview of the result as reported above in
Table 3 shows that the LPS for the 12th g-
prior structure at the different model spaces

using normalized real-life data are of the
lowest. Similarly, the results show that the
LML for the 12th g-prior structure at the
different model spaces using normalized real-
life data are of the highest.

n
g 1


n
kg 

n
g 1



k
ng 

2

1
k

g 
)(
)1(

nIn
kIng 



)(
1

3nIn
g 

)( 3nIng 

n
kg 
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Table 4: Predictive Ability under Different Choices of g-priors Examined using Both LPS and
LML for the Un-normalised Real Life Data

g-prior
Structures

Un-normalised
Real-life Data
LPS LML

S/N
n = 72,
k = 41

n = 72,
k = 41

1 g = n
g = 72 g = 72
-137.5 363.9

2 & 3

g = max (n, K2)
g = k2

g = 1681 g = 1681
-115.8 354

4
g = 0.013889 g = 0.013889
-129.9 349.3

5
g = 0.569444 g = 0.569444
-135.2 317.9

6
g = 0.117851 g = 0.117851
-130.4 328.8

7
g = 0.754615 g = 0.754615
-136.6 337.8

8
g = 12.83 g = 12.83
-150.7 354.5

9
g = 0.077942 g = 0.077942
-125.8 377.8

10
g = 0.873968 g = 0.873968
-137.7 309.3

11
g = 0.000595 g = 0.000595
-129.7 312.7

12
g = 11.24451 g = 11.24451
-150.8 393.9

An overview of the result as reported above in
table 4 shows that the LPS for the twelfth g-
prior structure at the different model spaces
using un-normalized real-life data are of the

lowest. Similarly, the results show that the
LML for the 12th g-prior structure at the
different model spaces using normalized real-
life data are of the highest.

n
g 1


n
kg 

n
g 1



k
ng 

2

1
k

g 

)(
)1(

nIn
kIng 



)(
1

3nIn
g 

)( 3nIng 

n
kg 
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Table 5: Comparing the Predicted Values of the 72nd Observation (Dependent Variable) with its
Actual Value using Respective Log Predictive Scores (LPS) Across Parameter g-priors.

Table 5 above compares the sensitivity and
predictive abilities of the different g-priors by
predicting the 72nd observation (Dependent
Variable), using 71 observations against 41
regressors (Explanatory Variables) of the real-
life dataset. The results from Table 5 show
that the actual value of the dependent variable
of the 72nd observation is best predicted by
one of the g-prior structure

investigated:
k
ng  based on the predicted

values (closest to the actual value). Though,
preceded by g-prior no. 1, 2 & 3 having one
of the lowest LPS.

CONCLUSION
Bayesian methodology provides a formal
framework to implement model averaging
under large model space with reliable results
obtained. This study provides closed-form
solutions and reduces the complexity of prior
elicitation to one scalar g relying on its virtues
for consistency and penalty term for model
size. Given huge model space generated by

S/N g-prior
Actual
Value

Predicted
Value LPS

1 g = n 0.0046 0.0013 -3.716

2 g = max (n, k2) 0.0046 0.0021 -3.649
3 g = k2

0.0046 0.0021 -3.649

4 n
g 1


0.0046 0.021 -2.603

5 n
kg 

0.0046 0.016 -2.917

6 n
g 1


0.0046 0.02 -2.683

7 n
kg 

0.0046 0.015 -2.981

8  3lnng 0.0046 0.031 -3.633

9  3ln
1
n

g 
0.0046 0.021 -2.653

10

 
 n
kg
ln

1ln 


0.0046 0.0145 -3.019

11 2

1
k

g 
0.0046 0.0214 -2.592

12 k
ng 

0.0046 0.0033 -3.614
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increased number of regressors with relatively
small number of observations, reliable results
were obtained using some set of g-prior
structures in literature. Under a uniform
model prior, the study identifies g-priors no. 1,
2, 3 & 12 (Table 1) to exhibit consistently
competitive and reliable out-of-sample
predictive performance, using both real life
and simulated data set. These findings
compliment the results of Fernandez, Ley and
Steel (2001a, 2001b) and results compares
favorably with the effects and results of other
g-prior cited in the paper of (Fernandez, Ley
and Steel, 2001a, 2001b).
In conclusion, Zellner’s g-priors in Bayesian
Model Averaging offer a sound fully
Bayesian approach that features the virtues of
prior input and predictive gains without
incurring the risk of misspecification.
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