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ABSTRACT

Correlated survival data with possible censoring are frequently encountered in survival analysis.
When there are dependencies among observed survival times, conventional Cox proportional
hazards model (CPHM) and Accelerated Failure Time (AFT) models that assumes independent
responses may not be appropriate. In this study, we compare the performance of parametric and
semi-parametric survival models with application to clinical data. Specifically, the AFT model
and the CPHM with and without Random effect were compared. Data on hypertension was
collected from Federal Medical Centre Keffi and General Hospital Nasarawa for the period of
five years (2016 – 2020). The results from the analysis revealed that the Weibull AFT model
with Gamma Random effect distribution had the least AIC and BIC values indicating that it
outperformed the other models considered in this study. Hence, the interpretation of the results
was based on the most efficient model. Based on our results, it was found that hypertension
patient that were giving drugs on the visit to the hospital has longer survival time compared to
those that were not giving drugs. Also, Hypertension patient with blood group AB and Obesed
have lesser survival time as compared to those with blood group o+ and normal weight
respectively. The study recommend that health expert can use the Weibull AFT model with
Gamma Random effect for predicting the risk factors of Hypertension especially when the data
are correlated.
Keywords: AFT, CPHM, Hazard, Hypertension, Survival,

INTRODUCTION

Survival analysis is a set of statistical
methods for data analysis where the
outcome variable is the time until the
occurrence of an event of interest (Collet,
2003). For example, the event of interest
could be mortality, the onset of a disease,
the failure of a device, or the recovery from
surgery. Survival analysis is the name that is
most generally used and recognized, despite
the fact that different fields may emphasize

slightly different methodologies and
procedures (Xin, 2009). In survival analysis,
the time is called the survival time.
The methods for dealing with survival
analysis differ from other statistical methods
for the following reasons: time is always the
response variable, there are possibilities of
staggered entries (the units in the study have
different times of entrance), but this does not
affect the survival analysis method because
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the method deals with the length of time of
observation rather than the same entrance
time, and finally, the assumptions of
normality do not hold because survival data
are generic (Isaac, 2019). Three main classes,
namely, non-parametric, semi-parametric
and parametric survival models are usually
used to analyze survival data. The
discrepancies across the types of models are
primarily due to assumptions made about the
survival time distribution (Kleinbaum &
Klein, 2012). When discussing
nonparametric approaches, the Kaplan
Meier estimator comes to mind immediately.
Its limitation is that it can only handle one
variable at a time. A semi-parametric model
is the Cox proportional hazards model. A
parametric survival model is one in which
survival times are expected to follow a
certain statistical distribution. Exponential,
Weibull, gamma, generalized gamma,
lognormal, and log-logistic distributions
have all been utilized in this way. Semi-
parametric models are more widely utilized
in medicine than parametric ones.
In medical science, survival models have
been used extensively. Here are a few
examples: Pocock, Clayton and Altman
(2002), Nardi, & Schemper (2003), Susan
(2011), Shankar, Screenivas, and Subrat
(2019), Vincent and Ismaila (2020) and so
on. Chronic diseases such as hypertension
are on the rise around the world, and they
are linked to a lower quality of life and a
higher financial burden; hence, developing
preventive treatments for chronic diseases is
critical (Lahham, 2009). A growing burden
of chronic diseases, in addition to infectious
diseases and dietary issues, is burdening
developing countries. Despite the fact that
chronic diseases account for a significant
share of the disease burden in African
countries, adequate efforts are not devoted
to their prevention and control (WHO and
AFRO, 2005).

Cox Proportional Hazard Model (CPHM)
and Accelerated failure time (AFT) has
received much attention recently. For
instance, Nardi, & Schemper (2003) used
real data in their study of the comparison of
Cox and parametric models in clinical
studies; Qi (2009) compare the performance
of Proportional Hazards and Accelerated
Failure Time Models.; Shankar, Screenivas,
and Subrat (2019) compare the performance
of Cox Proportional Hazards Model and
Lognormal Accelerated Failure Time Model
with application in Time to Event Analysis
of Acute Liver Failure Patients in India;
Isaac (2019) study the robustness of Semi-
Parametric Survival Model: Simulation
Studies and Application to Clinical Data
Studies; Susan (2011) conducted a study on
frailty models with applications in medical
research: Using observed and simulated data,
Vincent and Ismaila (2020) conducted a
study on parametric survival modeling of
tuberculosis data using data from Federal
Medical Centre, Bida, Niger State, Nigeria.
However, less attention has been given to
modelling correlated survival data.
In survival analysis, correlated survival data
with probable censoring is commonly in
occurrence.
This comprises a multi centered study where
individuals are clustered by clinical or other
environmental factors that influence the
predicted survival time. The traditional cox
proportional hazards and AFT models,
which assume observations are independent,
are unsuitable for data in this situation. For
Instance, Vincent and Ismaila (2020)
performed parametric survival analysis of
Tuberculosis data collected from Federal
Medical Centre Bida. Three AFT parametric
survival (Exponential, Weibull, Log normal
and Log logistic) were fitted. It was found
that the Weibull model performed better.
However, the study focused on studying the
effect of the fixed covariate on the survival
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time without considering the cluster-specific
(Hospital) random effect on the survival
time.
In this study, we compare the performance
of the parametric and semi-parametric
survival models with application to clinical
data. Specifically, the study compared the
performance of Acceleration Failure Time
and Cox Proportional Hazard Model with
and without random effect with application
to hypertension clinical data sets.

MATERIALS AND METHODS

Source of Data
Secondary data was used in this study. Data
on Hypertension was collected from Federal
Medical Centre (FMC) Keffi and General
Hospital Nasarawa, Nasarawa State, Nigeria
for the period of five years (2016 – 2020).

Method of Data Analysis
Cox Proportional Hazards models with
Random Effect
A semi-parametric model (Cox-proportional
Hazards model) with random effect can be
formulated as:
�� � = �0 � ���(�1�1�, �2�2�, …, ����� +
∝�) (1)
Where �0 is the baseline hazard function, ��
is a vector of fixed effects corresponding to
the covariates vectors �� ��� ∝� is the per-
subject random effect denotes the random
effect associated with the jth cluster. The
random effect can be thought of as an
intercept that modifiers the linear predictors.
This approach retains the full flexibility of
Cox regression while accommodating
associations among individual response
times.

AFT Parametric Survival models with
Random Effect Parameter
Conventional AFT model that assumes
independent responses may not provide
reliable inferences for clustered data that is,
where subjects are correlated within clusters
such as hospital. In this study, we introduce
a random effect component to the AFT
model that account for lack of
independencies by introducing a random
effect component as:
log�� = � + ∝'�� + ��� + � (2)
Where ∝' is a vector of unknown regression
coefficient, σ is a scale parameter, � is the
intercept parameter, the �� is the
independently and identically distributed
random errors, and the � is the cluster-
specific random effects which are assumed
to be independent, identically distributed
random variables with density function
�(�) . Here we have assumed that the
random effect b follows gamma and inverse
Gaussian distribution with mean zero and
variance � , as defined in the density
function in equation (17) and (18)
respectively.

� � = �
1
�

−1

�
1
� Γ(1�)

exp −��
�

, � > 0 (3)

Where Γ(. ) is the gamma function, it
corresponds to the gamma distribution
���(�, �) with � fixed to 1 for
identifiability and its variance is � the
associate Laplace transform is:

� � = 1 + �
�

−�
, � > 0 (4)

Note that if � > 0, there is heterogeneity. So
the large values of � reflect a greater degree
of heterogeneity among groups and a
stronger association within groups. The
conditional
survival and hazard function of the gamma
frailty distribution is given by Gutierrez
(2002):
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�� = 1 − � ln � �
−1
� and ℎ� � =

ℎ � 1 − �ln (� � )
−1

(5)
where S(t) and h(t) are the survival and the
hazard functions of the baseline distributions.
For the Gamma distribution, the Kendall’s
Tau (Hougaard, 2012), which measures the
association between any two event times
from the same cluster in the multivariate
case. It is an overall measure of dependence
and independent of transformations on the
time scale and the frailty model used. The
associations within group members are
measured by Kendall’s, which is given by:
� = �

�+2
�(0,1) (6)

Similar to the gamma random effect model,
simple closed-form expressions exist for the
unconditional survival and hazard functions,
this makes the model attractive. The
probability density function of an inverse
Gaussian shared distributed random variable
with parameter � > 0 is given by:

��(��) = 1
2��

1
2��

−3
2 exp − ��−1 2

2���
, � >

0, � > 0 (7)
For identifiability, we assume X has
expected value equal to one and variance �.
The
Laplace transformation of the inverse
Gaussian distribution is:-

� � = exp 1− 1+2��
1
2

�
, � > 0, � > 0

(8)
For the inverse Gaussian frailty distribution,
the conditional survival and hazard function
is given by Gutierrez (2002) in (9) and (10)
respectively:
�� � = exp { 1

�
1 − 1 −

2� ln � �
−1
2 , � > 0 (9)

and
ℎ� � = exp { 1

�
1 − 2� ln � �

−1
2 , � >

0 (10)

where S(t) and h(t) are the survival and the
hazard functions of the baseline distributions.
With multivariate data, an Inverse Gaussian
distributed frailty yields a Kendall’s Tau
given by:

� = 1
2

− 1
�

+ 2
exp 2

�
�2 2

�

∞ exp −�
�

� ��, �(0, 1
2

)

(11)
On the log survival time scale, the random
effect can be thought of as an unobserved
covariate that describes certain decreases or
increases in event timings for distinct
clusters. Within a cluster, all observations
have a same unobserved random effect. The
log of the survival time has a location-scale
distribution in several survival time
distributions, such as the Log-normal,
Weibull, and Log-logistic distributions.
Conditional on the random effects, the
survivor function in (12) can be written in
the form
��� � �� = �0( ���−�−∝���−�

�
|�). (12)

One assumption of the parametric model is
that the survival time is assumed to follow a
distribution with density function f(t). The
AFT survival models considered in this
study are: Exponential, Weibull, Log-
Normal and Log-logistic survival
distributions.

1. The Weibull AFT Model
Survival time t is a positive random variable
with Weibull probability density function
can be expressed as:

� �; �, � = �
�

�
�

�−1
exp [ − �

�

�
]

(13)
where, � > 0 and � > 0 and the baseline
hazard function of the distribution becomes:

ℎ �; �, � = �
�

�
�

�−1
(14)

This yield the following survivorship
functions: � � = exp [ − �

�

�
] and the
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cumulative hazards function becomes
H t = �

�

�

Depending on the value of �, the hazard
function can increase or decrease with
increasing survival time. Hence the Weibull
model can yield an accelerated failure time
model. Independent observations (t�, ��),
� ,...,� with survival time t� and censoring
indicator �� which has value of one if ith
observation is not censored and zero when
the ith observation is censored and let � be
the unknown parameter. The likelihood
function is:
� � = �=�

� ��(��) �� ��(��) �−��}�

= �=1
� { ��(��)

��(��)

��
� ��(��)

�=�
� �(��) ����(��)}�

�=1
� { �

�
�
�

�−1 ��

exp [ − �
�

�
}�

(15)
Re-parameterizing the Weibull distribution
using = μ−α then ℎ0 � = � t�−1 will be the
baseline hazard function. Now incorporate
covariates � in the hazard function, the
Weibull regression models become:
ℎ �; �, ∝ = ����−1exp (� ∝ )

(16)
2. The Exponential AFT Model

The time data is skewed to the right with
exponential distribution, the time of survival
for a set of covariates �, which is called,
accelerated failure time is expressed as:

� = exp (� +∝'� + ��) (17)
Where � is the error component
The survivorship function may be obtained
by expressing in terms of time as:
�(t, �,∝) = ���( -t �−∝'�) and the hazard
function of the exponential regression model
is
h(t,�, ∝)= �−∝'�.

3. The Log-Logistic AFT Model
Multiple covariate log-logistic accelerated
failure time may be expressed as:

���� = exp (� + ∝'� + ��)
(18)

Where � is the scale parameter and � is the
residual (unexplained) variation in the
transformed survival time. The survivorship
function for the model in (11) is � �, �, ∝
, � = [1 + exp (�)

−1

Where z is the standardized log-time
outcome variable, that is;
� = �−�−∝��

�
(19)

and � = ln �
The odds of a survival time of at least t are,
�� = �(�,�,∝,�)

1−�(�,�,∝,�)
= exp −� , (20)

assumes that the covariate is dichotomous
and coded 0 or 1. The odds- ratio at time t
from the ratio the odds of a survival time
evaluated at x= 0 and x= 1 is:

�� � = 1, � = 0 =
exp [− �−�−∝1�1 ]

�
exp [− �−�−∝1�0 ]

�

= ��� ∝1
�

(21)
This is independent of time.

4. The Lognormal AFT Model
The log-normal model assumes that � ~N (0,
1). Let h(t) be the hazard function of � for
the model (11) when �=0 �.e. �0 = �1= ... =
�� = 0. Then, h(t) has the following
functional form:

ℎ � =
� log (�)

�

[1−� log (�)
� ��

(22)

where � � = 1
2�

exp  −�2

2
is the

probability density function, and � � =

−∞
� 1

2�
exp  −�2

2
��� is the cumulative

distribution function of the standard normal
distribution. The survival function �(t/�) at
any covariate x can be expressed as:
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� � � = �[� + ∝1
∗�1 + … + ∝�

∗�� −∝
log � ] (23)
Where ∝= 1

�
, ∝�

∗ = ∝�

�
for � = 0,1, …, �
This is the final survival model with
intercept depending with t.
Method of Estimation
According to Gutierrez (2002), given the
covariates information under assumptions of
non-informative right -censoring and of
independence between the censoring time
and the survival time random variables, the
marginal log-likelihood of the observed data
is given by:
����� �, ∝ , �; �, � =

�=1
� [( �=1

�� (ℎ0 ��� ����� ���
� ∝ ���)� 0

∞ ��
��� ���( −

�� �=1
�� ℎ0 ��� ��� ���

� ∝� �(��)���]

= �=1
� [( �=1

�� (ℎ0(���)��� ���
� ∝ ���

�� ) ×
−1 �����( �=1

�� ℎ0 ��� ���(���
� ∝ )]�

(24)
Taking the logarithm, the marginal
likelihood is:
����� �, ∝ , �; �, � =

�=1
� {[ �=1

�� ���(log (ℎ0 ��� )�� + ���
� ∝ )] +

log [ −1 ����([ �=1
�� ℎ0 ��� exp (���

� ∝�
)])]} (25)
Where �� = �=1

�� ���� is the number of event
in the ��ℎ cluster, and � � (. ) is the ��ℎ

derivative of the Laplace transform of the
random effect distribution defined as:

�(�) � = � exp −�� =

0
∞ exp − ��� � �� ���,� � ≥ 0

where � represents a vector of parameters of
the baseline hazard function, ∝ the vector
of regression coefficients and � the variance
of the random effect. Estimates of �, ∝, �
are obtained by maximizing the marginal
log-likelihood of the above; this can be done
if one is able to compute higher order
derivatives � � (. ) of the Laplace transform
up to � = max {�1, …, ��}.
Model Diagnosis
For the parametric regression problem,
analogs of the semi parametric, residual
plots can be made with a redefinition of the
various residuals to incorporate the
parametric form of the baseline hazard rates
(Klein and Moeschberger 2003). The first of
such residual is the Cox–Snell residual that
provides a check of the overall fit of the
model. The Cox–Snell residual, rj, is defined
by:

�� = ��(��|��)
Where �� is the cumulative hazard function
of the fitted model. If the model fits the data,
then the �� ’s should have a standard (�=1)
exponential distribution, so that a hazard
plot of �� versus the Nelson-Aalen estimator
of the cumulative hazard of the �� ’s should
be a straight line with slope 1. The best
model will have the plots of the cumulative
hazard close to the line of the residuals.
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RESULTS

Application to Hypertension Data
Table 1: Descriptive Summary of Hypertension Data

Covariates Categories Status Total
Censored (%) Event (%)

BMI Under weight 134(32.6) 14(3.4) 148(36.0)
Normal weight 164(39.9) 19(4.6) 183(44.5)
Overweight 55(13.4) 4(1.0) 59(14.4)
Obese 16(3.9) 5(1.2) 21(5.1)

Blood Group 0+ 81(19.8) 6(1.5) 87(21.2)
0- 55(13.4) 6(1.5) 61(14.9)
A+ 65(15.9) 7(1.7) 72(17.6)
A- 47(11.5) 7(1.7) 54(13.2)
B+ 32(7.8) 4(1.0) 36(8.8)
B- 23(5.6) 5(1.2) 28(6.8)
AB 62(15.1) 7(1.7) 69(16.8)
C+ 1(0.2) 0(0.0) 1(0.2)
D- 2(0.5) 0(0.0) 2(0.5)

Family Type Negative 35(49.3) 4(5.6) 39(54.9)
Positive 27(38.0) 5(7.0) 32(45.1)

Alcohol intake Yes 235(57.6) 28(6.9) 263(64.5)
No 131(32.1) 14(3.4) 145(35.5)

Occupation Student 19(4.7) 0(0.0) 19(4.7)
Self-employed 332(82.0) 41(10.1) 373(92.1)
Employed 13(3.2) 0(0.0) 13(3.2)

Diagnosis HTN only 294(71.9) 36(8.8) 330(80.7)
HTN and Others 73(17.8) 6(1.5) 79(19.3)

Drugs Yes 351(86.7) 37(9.1) 388(95.8)
No 12(3.0) 5(1.2) 17(4.2)

Source: Computed using SPSS

Table 2: Proportional Hazard Assumption
Chi-square P-value

Global test for Hypertension Data Set CPH model 12.13 0.7922
Source: Computed using STATA

The statistical approach (hypothesis testing)
which tests the null hypothesis that
proportional hazard assumption is met was
used in testing the proportionality
assumption. This approach is done by
estimating the test of the proportional
hazards assumption using the global test.
Table 2 provides the results for the test. The

“Global” gives the global test of probability
for the model at once. The Chi-square values
and p-values gives the test statistics and
probability values under which the null
hypothesis is tested. From the table 2, the p-
value was found to be greater than 0.05.
Hence, the null hypothesis was accepted.
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This suggests that PH assumption is met at α
= 5% significant level.

Table 3: AIC and BIC for Hypertension Data
No RE GAMMA RE Inverse Gaussian RE

Model AIC BIC AIC BIC AIC BIC
CPHM 3932.4 3999.3 3931.9 3998.7 - -
Exponential 870.2 940.9 872.2 946.9 872.2 946.9
Weibull 582.7 657.4 512.8 591.5 546.1 624.7
Lognormal 521.8 596.5 521.5 600.1 521.8 600.4
Log logistic 513.1 595.8 518.8 596.5 568.8 691.5

Source: Computed using STATA

The Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) for
each model is presented in Table 5. In order
to compare the performance of the
conventional cox proportional hazard model
with cox proportional hazard model with
random effect. The AIC and BIC values
were used. The result as presented in Table
3 revealed that the cox proportional hazard
model with random effect parameter has
least value of AIC and BIC as compared to
the conventional cox proportional hazard
model (without random effect parameter).
This suggest that the cox proportional
hazard model with random effect parameter
outperformance the conventional cox
proportional hazard model. Hence, the
researcher focused on the interpretation of
the result based on the cox proportional
hazard model with random effect parameter.

In addition, the performance of AFT model
with random effect and the conventional
AFT model were also asses using the AIC
and BIC values. The result of the analysis as
presented in Table 3 indicated that the
Weibull AFT model with Gamma random
effect distribution has the least AIC and BIC.
This suggest that Weibull AFT model with
Gamma random effect outperformance the
exponential, log-logistics and lognormal
models. Hence, it was considered as the best
AFT model for predicting the survival time
for Hypertension patient. This implies that
Weibull Gamma random effect AFT model
it is more efficient model to describe the
determinant factors of time-to-event of
hypertension patient. Hence, the study
focused on the interpreting the result of
Weibull Gamma random effect AFT model.
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Table 4: Cox Proportional Hazard Models
CPH (No RE) CPH (With RE)

Parameter Category B HR S. E P-value B HR S. E P-value
Diagnosis HTN only Ref

HTN & Others 0.1180 1.1253 0.1645 0.419 0.0831 1.0866 0.1610 0.575

Drugs No Ref

Yes -0.8635 0.4217 0.1121 0.001 -0.8538 0.4258 0.1134 0.001

Occupation Student Ref

Self-employed 0.0495 1.0507 0.3271 0.874 -0.0008 0.9992 0.3130 0.998

Employed 0.0815 1.0849 0.4359 0.839 0.0530 1.0544 0.4243 0.895

Alcohol
Intake

Yes Ref

No -0.0883 0.9155 0.1047 0.440 -0.0741 0.9286 0.1065 0.519

Family Type Negative Ref

Positive 0.0689 1.0713 0.1144 0.519 0.0515 1.0529 0.1129 0.630

Blood Group 0+ Ref

0- 0.1220 1.1298 0.2053 0.502 0.1172 1.1244 0.2041 0.518

A+ 0.0755 1.0784 0.2131 0.702 0.0618 1.0638 0.2104 0.754

A- 0.1232 1.1311 0.2112 0.509 0.1181 1.1254 0.2099 0.527

B+ 0.0388 1.0396 0.1943 0.835 0.0253 1.0256 0.1917 0.893

B- -0.2084 0.8119 0.1902 0.374 -0.1922 0.82514 0.1933 0.412

AB 0.2914 1.3383 0.3003 0.194 0.2698 1.3097 0.2942 0.230

C+ 0.1973 1.2181 1.2367 0.846 0.1156 1.1226 1.1412 0.909

D- 0.1870 1.2056 0.87603 0.797 0.1610 1.1747 0.8539 0.825

BMI Normal weight Ref

Under weight 0.2220 1.2486 0.3104 0.372 0.2471 1.2803 0.3189 0.321

Overweight -0.0172 0.9829 0.1676 0.9190 0.0249 1.0252 0.1772 0.886

Obese 0.3206 1.3780 0.16880 0.009 0.2650 1.3034 0.1659 0.037

� 0.0093 0.0192

� 0.0046

Likelihood ratio ( �): �2 = 0.53; prob. = 0.234

Source: Computed using STATA
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The estimated parameters for Cox
Proportional Hazard model with and without
random effect was presented in Table 4.
Since CPHM with Random effect
outperformed the conventional CPHM, the
interpretation of the result was based on the
selected model. The random effect in the
CPHM is assumed to follow the Gamma
distribution with mean 1 and variance equal
to theta (�). The heterogeneity in the
population of the study which is used as a
clusters as estimated by the selected model
is � = 0.0093 and the dependence within the
clusters (hospitals) is measured by Kendall’s
tau is � = 0.0046. A variance of zero (� = 0)
indicate that the random effect component
does not contribute significantly to the
model. A likelihood ratio test for the
hypothesis � = 0 is shown at the bottom of
Table 4 and indicates a chi-square �2 value
of 0.53 resulting to an insignificant p value
of 0.234. This implied that the random effect
component had insignificant contribution to
the model.
The Hazard Ratio (HR) which is the exp(B)
gives the hazard ratio between two groups
with HR < 1 indicating reduction in hazard,
HR > 1 indicating increase in hazard and
HR = 1 indicating no hazard. In the selected
model (CPHM with random effect), the
categorical variables drugs, BMI (Obese)
were significant factor implying that drugs
and BMI were the two factors in this study
that significantly contributed to the hazard
of hypertension patient. However, the
variable BMI (underweight and overweight)
were not significant using normal weight as
the reference category (B = 0.2471, HR =
1.2803, S.E. = 0.3189, p-value = 0.321 and
B = 0.0249, HR = 1.0252, S.E. = 0.1772, p-
value = 0.886).
The estimated coefficient for patient that
were giving drugs was -0.8538 indicating
the expected change of the log hazard ratio
for every one-unit increase in patient with

drugs when other covariates are held
constant. The estimated values for patient
that were giving drugs is (B = -0.8538, HR =
0.4258, S.E. = 0.1134, p-value = 0.001). The
negative sign of the coefficient indicates
negative relationship between the covariates
and the event (death) from hypertension.
Hence, the negative coefficient for patient
with drugs indicates that patients that were
giving drugs were at less risk of dying from
hypertension than those that were not giving
drugs. Those with drugs were at lower risk
of dying with hypertension by a factor
0.4258 (42.6%) times lower than
hypertension patient that were not given
drugs when other covariates are held
constant.
Also, the estimated coefficient for the obese
hypertensive patient was positive and
significant (B = 0.2650, HR = 1.3034, p-
value = 0.037 < 0.05). This implies that
hypertension patient that are obese are at a
higher risk of dying with hypertension than
those that are normal weight. The Hazard
Ratio (1.3034) indicates that hypertension
patient that are obese are at higher risk of
dying with hypertension by a factor 0.3034
(30.3%) times higher than those with
underweight. The other covariates
Diagnosis, occupation, alcohol intake,
family type and blood group were statistical
insignificant.
Table 5 presents the summary results of
analysis of Weibull AFT models with and
without the random effect. As stated earlier,
the Weibull Gamma random effect AFT
model with a minimum AIC and BIC values
of 512.8 and 591.5 appears to be appropriate
model compared with other models (Table
3). The implication of this findings is that
the Weibull Gamma random effect AFT
model is more efficient model to describe
determinant factors of time-to-event of
hypertension. From Table 5, the random
effect parameter in this model is assumed to
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follow a Gamma distribution with mean 1
and variance equal to theta (�). The
heterogeneity in the population of the
hospitals which were used as a clusters are
estimated by the selected model is � =
1.1259 and the dependence within the
clusters (hospitals) is measured by Kendall’s
tau is � = 0.3602. A variance (heterogeneity)
of zero (�=0) would indicate that the
random effect component does not
contribute to the model (no association
among failure time). A likelihood ratio test
for the hypothesis � = 0 was presented at the
bottom of Table 5 and indicates a chi-square
(�2) value of 71.86 which resulted to a

highly significant p value of 0.000. The
implication of this findings is that, the
random effect component had significant
contribution to the model. This suggest that
there is a possible correlation in the survival
time of patients within the hospital. The
estimated Kendall’s tau (� = 0.3602) shows
that there is strong dependence (association)
within the cluster for Weibull Gamma
random effect model. The estimate of
shape parameter in the Weibull Gamma
random effect AFT model is � = 1.4215.
This value shows the shape of hazard
function is unimodal because the value is
greater than unity i.e., it increases up to
some time and then decreases.
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Table 5:Weibull AFT Models for Hypertension
Weibull (No RE) Weibull (Gamma) Weibull (Inverse Gaussian)

Parameter Category B TR S. E P-value B TR S. E. P-value B TR S. E P-value
Intercept 1.0903 2.9752 0.1875 0.000 0.1908 1.2102 0.2382 0.423 0.7108 2.0356 0.1950 0.000

Diagnosis HTN only Ref.

HTN & Others -0.1381 .8710 0.0671 0.039 -0.0116 0.9885 0.0645 0.857 -0.0865 .9171 0.0662 0.192

Drugs No Ref.

Yes 0.4615 1.5865 0.1207 0.000 0.7712 2.1624 0.1237 0.000 0.538 1.7126 0.1185 0.000

Occupation Student Ref.

Self-employed -0.0987 .9060 0.1422 0.488 0.1052 1.1109 0.1641 0.521 -0.0377 .9630 0.1433 0.793

Employed -0.1566 .8550 0.1875 0.404 0.0906 1.0948 0.1977 0.647 -0.0645 .9375 0.1836 0.725

Alcohol Intake Yes Ref.

No 0.1050 1.1107 0.0521 0.044 0.0338 1.0344 0.0482 0.484 0.0626 1.0646 0.0520 0.229

Family Type Negative Ref.

Positive -0.0594 .9423 0.0490 0.224 -0.0002 .9998 0.0469 0.997 -0.0328 .9677 0.0490 0.503

Blood Group 0+ Ref.

0- 0.0480 1.0492 0.0848 0.572 -0.1112 0.8948 0.0751 0.139 -0.0212 .9790 0.0821 0.796

A+ -0.0723 .9303 0.0903 0.423 -0.0530 0.9484 0.0861 0.538 -0.0691 .9332 0.0910 0.447

A- -0.1146 .8917 0.0859 0.182 -0.0370 0.9637 0.0809 0.647 -0.0892 .9147 0.0861 0.301

B+ -0.0559 .9456 0.0853 0.512 0.0379 1.0386 0.0802 0.637 -0.0189 .9813 0.08589 0.826

B- 0.1896 1.2088 0.1065 0.075 0.1267 1.1351 0.1027 0.217 0.1435 1.1543 0.1076 0.182

AB -0.1829 .8329 0.1027 0.075 -0.1871 0.8294 0.0939 0.046 -0.1838 .8321 0.1026 0.073

C+ -0.2164 .8054 0.4611 0.639 0.0430 1.0439 0.3623 0.905 -0.1057 .8997 0.4738 0.823

D- -0.1135 .8927 0.3300 0.731 -0.0571 0.9445 0.2812 0.839 -0.0904 .9136 0.3375 0.789

BMI Normal weight Ref.

Under weight -0.1847 .8314 0.1139 0.105 -0.0930 0.9112 0.1130 0.411 -0.1565 .8551 0.1147 0.173

Overweight -0.0442 .9568 0.0802 0.582 0.0251 1.0254 0.0754 0.739 -0.0189 .9813 0.07729 0.807
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Obese -0.2618 .7697 0.05565 0.000 -0.1079 0.8977 0.0541 0.046 -0.1999 .8188 0.0555 0.000

� 0.7884 0.0376 0.000 1.4215 0.0897 0.000 1.1436 0.0707
� 2.1998 4.1434 0.3719 3.1381 0.2218
� 1.1259 0.2311 1.3142 0.0225
� 0.3602 0.3965

Likelihood ratio ( �): �2 = 71.86; prob. =0.000 Likelihood ratio ( �): �2 = 38.60; prob. = 0.000
Where: � is the shape parameter, � is the scale parameter and � is the random effect term
Source: Extracted using STATA

0
2

4
6

0 2 4 6
Cox-Snell residual

H Cox-Snell residual

FIGURE 1: AFT Weibull Model with Gamma RE for HTN Data Sets
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The estimated values, standard error, time
ratio (TR), estimated parameters of baseline
distributions and random effect parameter (�)
were presented in Table 5. The Weibull with
Gamma random effect distribution shows that
drugs, blood group and BMI are statistically
significant (p-value < 0.05) for hypertension
patient. Whereas the diagnosis, occupation,
alcohol intake and family type were found to
be statistically insignificant factor for
hypertension. The hypertension patient that
were giving drugs have had longer survival by
a factor 2.16 than those that were not giving
drugs (TR > 1). Patient with blood group AB
had lesser survival than those with blood
group 0+ (TR < 1). Furthermore, the result of
the analysis also revealed that Obese
hypertensive patient had lesser survival time
as compared to those with normal weight (TR
< 0.05). This implies that Drugs, blood group
and BMI are the risk factors of hypertension.
The Cox–Snell residuals are one way to
investigate how well the model fits the data.
The plots of residuals for the selected models
Weibull AFT with Gamma Random effect via
maximum likelihood estimation with
cumulative hazard functions are given in Fig.
1. If the model fits the data, the plot of
cumulative hazard function of residuals
against Cox–Snell residuals should be
approximately a straight line. The plot for
both model makes straight lines through the
origin suggesting that the selected model is
appropriate for time-to-Event of Hypertension.

CONCLUSION
This study aimed at comparing the
performance of parametric and semi-
parametric survival models with application
to clinical data sets. Specifically, the study
compared the performance of conventional
semi-parametric model with extended semi-
parametric model (CPHM with random
effect). Also, the performance of conventional

AFT models and AFT models with random
effect were compared. Finally, the
performance of semi-parametric and
parametric AFT model with and without
random effect were compared. Based on the
results of the analysis as presented in the
previous section, it was concluded that the
Weibull AFT model with random effect
(parametric AFT model) outperformed all
other models considered in this study. The
study recommend that the health expert can
used AFT model with random effect in
predicting the risk factors of Hypertension
especially when the data arises from this
chronic disease are correlated.
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