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ABSTRACT

The problem is to determine whether or not there exists a neighborhood of a given point in which
a real-valued function of real-variables can be accurately approximated by a quadratic function.
As such, this paper explores a better way to determine the local minimal point of the given
function based on some critical assumptions and the algorithm that utilizes only function values.
The result of the experiments show that MR1 with either search A or search C should be used
because the terminal convergence is superior to that of the rank 2 schemes and the number of
function evaluations required is only about half that required by Powell’s no derivative scheme.
Keywords: MR1, local minimal point

Introduction
Let f denote a real-valued function of n

real-variables x. The problem then is to
determine a point X* such that: f(X*) ≤ f(x),
X∈En, under the assumptions that if (A – 1)
X* exists, then (A – 2) f is twice
continuously differentiable. It then follows
that in (A – 3) f, there is a neighborhood of
X* in which f can be accurately
approximated by a quadratic function, which
determines only a local minimal point of f.
The critical assumption here is (A – 4) and
as such, the algorithm can utilize only
function values.

Related Works
Several algorithms have been proposed for
this problem, however the ones that stand
out include: Powell’s no derivative scheme
[1], Stewart’s modification of Davidson-

Fletcher–Powell scheme [2]. Furthermore,
Powell’s scheme if used as stated in [1] may
generate even for quadratic functions [3], a
non-minimal point. Powell suggested a
modification [3] that corrects this problem,
but the resulting scheme may degenerate
into slow successive coordinate searches.

Zangwill [3] suggested an alternative
modification by recommending inserting
searches along coordinate lines at the
beginning of each cycle. The coordinate
lines are considered cyclically, and the
searches continue until a line of descent is
obtained. Clearly, if no coordinate line is a
line of descent, then the algorithm has
converged to a minimal point of f, since f is
continuously differentiable. This idea of
allowing searches along coordinate lines
‘periodically’ is used in the new algorithm.
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Stewart’s algorithm is quite different
from Powell’s. In Powell’s algorithm no
apparent approximation to the gradient of f
are made. Stewart on the other hand, makes
explicit approximations to the gradient of f,
which are then used in the Davidson –
Fletcher Powell (DEP) [4] recursive formula
to obtain approximations Hi. The
Approximations to the inverse of the
Hessian of f iterates at Xi, i=1, 2,… At Xi, a
search is made along the ray through Xi in
the direction – Hi ��

� , where ��
� denotes the

gradient approximation. In particular, the jth
component of ��

�, is given in Equation 1:
(��

�,)j = [f(Xi + h
�
� ej) – f(Xi) ] / h�

�………(1)
where, the function differences are
computed along the coordinate lines X = Xi

+�� , 1 ≤ j ≤n, through Xj. Stewart has a
clever formula for computing h �

� . The
matrices Hi, i=1, 2… are obtained formulas
seen in Equation 2:
Hi + 1 = Hi- (��� ��

�, ><Hi∆ ��
�,) / <∆ ��

�,
Hi� ��

� > + (∆xi><∆xi)/ <∆xi, ∆��
�>…..(2)

where, ∆��
�=��

�
+1 –��

�, and ∆xi=xi +1 –xi.
If f is a positive definite quadratic

function f = <�� x >/2+<c, x>, then the DFP
scheme converges to the minimal point of f
in n iterations. This finite convergence
depends upon three relationships namely:
�� (which denotes the gradient of f). R-1
(which denotes the directions of search di)
and ����(R-2) which indicates that the linear
searches are accurate, with <��+1 , ��> = 0
and (R-3)(∆g)I = Q(∆x)i. Clearly, if ��

� ≠ �� ,
then (R-1) is not satisfied. Moreover, if hi
varies with i, then (R-3) is not satisfied
either. Hence, if the gradient approximation
are inaccurate Stewart’s scheme may
converge very slowly or even terminate
prematurely since the inner product < ��
����

�> may vanish even if �� ≠ 0.
Furthermore, unless ��

� → �� as i →
∞ , the terminal convergence of Stewart’s
scheme is weak even when ��

� represents an

accurate approximation. However, for the
case tested in [2] Stewart’s scheme required
half as many function evaluations considered
worthy for further consideration. Actually,
rank I scheme [5] is quite worthy of
consideration, with Hi+1=Hi-( �� >< �� )/
<∆�� , ��>,where �� ≡ �� (∆�� ) - ∆xi. The
finite convergence properties of this scheme
depends largely upon the following two
conditions: That, (R – 3) and (R – 4) Hi are
invertible for each i. As such, the directions
of search can be arbitrary as long as they are
independent, while minimizing linear
searches are not required. (R – 3) is satisfied
whenever h�

� is constant over i (not j). Hence,
searches along coordinate lines can be
inserted without introducing errors into the
Hessian approximation, and perhaps a
further reduction in the number of function
evaluations required can be obtained by
using a non-minimizing linear search.

Methodology
Rank 1 recursion formula and the coordinate
searches were combined with several other
new ideas to obtain a new algorithm, MR1.
The differences between this algorithm and
Stewart’s algorithm other than the recursion
formula used for computing the matrices Hi,
where i=1, 2 …are given in Table1.
However, Table 1 requires some explanatory
c on subscripts i which refer to the iteration
number scripts j on the component of the
vest consideration.

In some cases the iteration j has been
omitted for simplicity. Moreover, it has been
used on the coordinate direction, since
directions of search other than used in MRI,
and the algorithm must keep track of Hi and
its inverse. Also, the approximation to the
Hessian of f, �� ajj in the approximation to
the jth component of the gradient of f at xi is
the jth diagonal element of �� . This second
order correction does more than just improve
the terminal convergence of the algorithm.
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In fact if f is a quadratic function and �� = Q
then ��

� in MIR equals the gradient of f, �� ,
for any size hj. In MRI lines of search, not
rays are used.

Table 1:MRI against Stewart’s Algorithm

MR1 Stewart

Approximation to the jth component of the gradient

gi
= (∆f)j/ hi – ha

j ij
2

Gj ((∆f)j/hj

Formula for hj
i

Hji = 21 f(xi)n/aijj | 1
2

or it is fixed apriori for all i

Depends on several factors. Basically there are

two formulas hj
i and a central differencing

option too

Directions of search, di

± Higi
a, and the

coordinate lines through xi

-Higi
a

Initial step size in the linear searches

Min {2,< gi
a,di>/< Gididj>} Min {1, -2(f(x + i) - fi)/< gi

a, di>}

Restarting rules

The number of function evaluations per linear

search exceeds a given value for several

successive searches, and

(n+1) iterations have been completed since the

latest restart

Aijj < 0 for some j OR < gi
a , Higi

a > < 0 or

+Higi
a > is a direction of descent at xi

Restart directions at xi

The coordinate lines through xi -gi
a

± Higi
a are not directions of descent at xi

Searches along the coordinate lines through xi Algorithm terminates

Stopping rule

Each coordinate line through xi is not a line of ║di║< €
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descent ║∆xi║

€ specified apriori

Implementation
As stated earlier, the rank one scheme
allows arbitrary directions of search. The
coordinate lines, which are any appropriate
set of independent directions, would work
just as well to prevent premature
convergence of the algorithm.

Two linear search strategies were used
in this approach. The first scheme, search
crude, C is a non-minimizing scheme that
attempts only to determine a point x on the
line of search through xi such that f(x) < f
(xi). The other scheme, search `accurate` A,
is a minimizing scheme that attempts to
bracket the minimal point of f on the line of
search and then fits a parabola to the data on
this line. In both searches, the initial step is
the one given in Table 1. Usually, this step
is 1 unit in size and takes one to the
stationary point of the current quadratic
approximation as seen in Equation 3:

gi (X) = < Gixi x> /2+
< gi

a - Gixi, x>……………………...…(3)
Stewart used the F – P search scheme [5]
which requires an apriori lower bound fi on
the function f. Such a bound may not be
easy to determine after all.

Stewart’s restarting strategy parallels
that of the DFP strategy, by checking the
positive definiteness of the matrices Hi. The
strategy in MRI is totally different, because,
the initial step size in each of the linear
searches, utilizes the current approximations
to the gradient and the Hessian of f. As such,
it seems reasonable to connect the restarting
procedure to the number of function
evaluations required to perform the linear
searches. Hence, if at each of q successive
iterations, more than r function evaluations
are required, where q and r depend upon the
search strategy used, and n+1 iterations have
been completed since the latest restart, then

it is assumed that the current approximation
to the Hessian is inaccurate and the
algorithm is restarted.

When the algorithm is restarted, Gi =
Hi =1 and a coordinate line of descent is
used, where the coordinate lines are
considered cyclically inclined; the stopping
rule in MRI, that a successive check of the
coordinate lines through xi yields no lines of
descent. This however, prevents premature
convergence, but does not provide sharp
termination if gi

a is not an accurate
approximation to gi . Furthermore, the
algorithm was programmed and run on a
computer with the standard test functions
Rosenbrock, Powell, Fletcher – Powell,
Chebyquad, and a 7–dimensional quadratic
function. Stewart’s paper [2] contains results
only for cases where the compared with
results obtained using MR1 with search A,
or search C, MDFP with search A or Search
C and MDFP1 with search A or search C.
MDFP denotes the algorithm obtained from
MR1, if the DFP scheme is used in updating
the approximation to the Hessian. MDFP1
denotes the algorithm obtained from MDFP,
if the gradient approximation is replaced by
those used by Stewart. Hence, MDFP1 is a
rank 2-type algorithm with a Stewart type
gradient approximation, but with the MR1
rules with respect to the linear search
schemes, restarting, directions of search,
formula for hj

i and stopping rule applied. For
the other tests with inaccurate gradient
approximations, MR1 was compared with
MDFP and MDFP1.

Among those cases with g gi
a and

accurate approximation to the gradient, and
gi

a → gi as i → ∞ ; Stewart’s scheme, and
MR1, MDFP, and MDFP1 all with search A
behaved quite similarly. This is with the
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exception of the one test function whose
Hessian is singular at the minimal point,
using Powell’s function of four variables.

The function MR1 with search A or C,
outperformed Stewart’s scheme and the
other rank 2 schemes. When gi

a was not and
‘accurate’ approximation to the gradient of f,
gi

a ⇸ gi as i → ∞; MR1 with either search A
or search C produced significantly better
reductions in f* ≡ f – f(m – m) than either
rank 2 scheme before it degenerated in to
pure coordinate searches.

Whether or not the number of
function evaluations required to reduced f *

to a specified value can be reduced by use of
a non-minimizing search needs to be
answered, although not always. However, in
certain cases significant reductions were
obtained. Algorithm MR1 with search C
generally required at each iteration, 0 or at
most 1 extra function evaluation, other than
the values f (xi) and f (xi+1)) to perform a
crude linear search. The first n iterations
after a start or restart each generally required
2 or 3 function evaluations. Moreover, this
decrease was balanced by a corresponding
increase in the number of iterations, and
Table 2 demonstrates this balancing effect.

Discussion of Results
The test function was the Chebyquad
function with n = 8. The results are
compared with Powell’s no derivative
scheme because Stewart [2] did not test this
function. In Table 1, gi

a is an accurate
approximation to the gradient of f; the
simplest version of Stewart’s formula was
used to compute each hj

i. Observe that hi → 0
i → ∞ , because f(min)=.0035… >0. f * ≡
f(xi)- f(min), FE denotes the number of
function evaluation and ITN denotes the
iteration number. R denotes the numbers of
times say n, where n + Hi gi

a is the direction
of descent. CD denotes the number of

coordinate lines used, and ND denotes the
number of times the line x = xi+ a Hi gi

awas
not a line of descent at xi.

In Table 3, f = Powell’s function of 4
variables, and the simplest version of
Stewart’s formula was used to compute hi.
Observe that hi → o as i → ∞ and hi is small
everywhere. Observe that MR1 with search
A outperformed MR1 with search C and
Stewart’s scheme. In Table 4, again f =
Powell’s function of 4 variables. Here, hi is
fixed apriori; hj

i =. 05, i =1, 2,…j = 1,…. J =
1,…,n. Four algorithms are compared, MR1
with search A, MR1 with search C, MDFP
with search A, and MDFP with search A.

Clearly, MDFP1 which uses the
Stewart gradient approximation is out of the
running. The other three algorithms
performed very similarly, where the basis of
comparison is the number of function
evaluations required to obtain a specified
reduction in f *, down to f * = 3x10-3. Both
MR1 with search A and MR1with search C
outperformed MDFP with search A. clearly,
MDFP1 which uses the Stewart gradient
approximation is out of the running. The
other three algorithms performed very
similarly, where the basis of comparison is
the number of function evaluations required
to obtain a specified reduction in f*, down to
f*=3× 10−3 . Afterwards, MR1 with Search
A and Search C both outperformed MDEFP
with Search A.

However, one unsolved problem is the
question of termination of the algorithm
when gi

a is not necessarily an accurate
gradient approximation. Each of the
algorithms considered degenerates into
ordinary coordinate searches after some
unspecified number of iterations, for
example: MR1 with Searches C in table 4
degenerated into coordinate searches at step
42.
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Table 5, considers the Fletcher-Powell
function with hj

i= . 05, j=1,…,n, i=1,2…. In
this case MDFP1 degenerated into
coordinate searches at iteration 46 and the
decrease to 6 × 10−2 was due to coordinate
searches. MDFP died at iteration 42 and the
decrease to 6 × 10−5 was attained before the
algorithm degenerated. The numerical
results clearly demonstrated that the rank 1
scheme MR1 will outperform a rank 2
scheme with Stewart’s gradient
approximations cannot be made arbitrarily
small.

However, the scheme also
demonstrate that the number of function
evaluations required by MR1 with search A
or C to achieve a specified reduction in f *

depends critically upon the degree of
accuracy of the gradient approximation. For
instance, looking at Tables 3, 4 with f =
Powell’s function of 4 variables. MR1 with
search A, and accurate gradient
approximations required 71 function
evaluations to reduce f to 10-4, while

Powell’s no derivative scheme on the other
hand required 138 function evaluations to
make the same reduction with a ratio of
almost 2:1. However, h j

i ≡ .05 MR1 with
search A, required 160 function evaluations
to make the same reduction and the balance
was in favor of Powell’s no derivative
scheme.
Conclusion and Future Work
If restrictions are really not very restrictive,
for example where h j

i =10-4 for f = PF4V,
then the numerical results as seen in Table 2
- 5 indicate that MR1 with either search A or
search C should be used because the
terminal convergence is superior to that of
the rank 2 schemes and the number of
function evaluations required is only about
half that required by Powell’s no derivative
scheme. More detailed computational results
and a few theoretical results are available in
reference [6]. Determining which algorithm
to use when hj

i is restricted remains an open
question to be addressed very soon.

TABLE 2: Table values of Iterations for Chebyquad function.
F= Chebyquad (n=8), hi

j = 2| f ×i 10-8/G j i j |
1
2

Itn MRI-C MRI-A Powell ND

F* FE F* FE F* FE
0
4
8
16
24
30

4 10-2
3 10-2
5 10-3
2 10-3
4 10-6
3 1013

1
46
85
161
238
292

4 10-2
1 10-2
4 10-3
3 10-4
2 10-12

1
60
107
201
294

4 10-2
7 10-3
2 10-3
2 10-5
6 10-13

1
91
194
385
537

R
SW
CD
DN

0
2
0
0

0
5
1
1

-
-
-
-
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TABLE 3: Table values of Iterations for Powell’s function with hi
j = 2| f ×i 10-8/G j i j |

1
2

F= Powell’s function 0 (n=4), hi
j = 2| f ×i 10-8/G j i j |

1
2

TABLE 4: Table values of Iterations for Powell’s function with hi
j = . 05

F= Powell’s function (n=4), hi
j = . 05

Itn MRI-A MRI-C MDFP-A MDFPI-A
F FE f FE F FE f FE

0
4
88
15
25
30

2 102
6 10-1
1 10-1
5 10-3
2 10-6
3 10-7

↓

1
30
68
137
245
305

2 102
5 100
1 100
8 10-2
3 10-3
9 10-4
↓

1
21
41
76
126
151

2 102
6 10-1
1 10-1
3 10-3
3 10-4
2 10-4

↓

1
33
71
140
222
270

2 102
6 10-1
5 10-1
4 10-1
8 10-2
1 10-2

↓

1
29
57
107
199
246

R
SW
CD
ND

2
1
7
5

1
2
6
5

5
0
7
2

1
0
1
0

TABLE 5: Table values of Iterations for Fletcher- Powell function
F= Fletcher- Powell function (n=3), hi

j = . 05
Itn MRI-A MRI-C MDFP-A MDFPI-A

f FE f FE F FE f FE
0
4
88

2 103
3 101
4 100

1
26
77

2 102
1 100
5 100

1
17
55

2 103
3 101
7 100

1
26
89

2 103
2 101
9 100

1
26
81

Itn MRI-C MRI-A Powell ND

F* FE F* FE F* FE
0
4
8
12
16
18
24

2 10-2
5 10-1
1 100
1 10-2
1 10-4
2 10-5
3 10-8

1
29
49
69
89
99
129

2 102
2 10-1
9 10-4
8 10-8
2 10-10
8 10-11
5 10-12

1
31
36
94
127
148
212

2 102
7 10-2
3 10-3
3 10-5
1 10-8
9 10-9

1
37
69
104
139
158

R
SW
CD
DN

1
2
1
0

1
3
1
0
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15
25
30

2 10-2
3 10-6
3 10-7

↓

138
218
319

2 10-2
2 10-3
1 10-4
7 10-5
↓

95
143
192
229

4 100
2 100
2 10-1
1 10-1

↓

150
217
296
332

6 100
2 100
5 10-1
3 10-1

140
203
272
322

R
SW
CD
ND

1
4
9
7

1
4
7
4

4
0
8
4

3
0
5
2
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