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ABSTRACT

Overestimation of building cooling load results into an oversized cooling system with consequent
waste of energy. Conversely, thermal comfort would be sacrificed if the building cooling load is
underestimated because of the use of undersized cooling system. The computer-based methods for
cooling load calculation are costly while most of the inverse models are complex and require
enough time to train the models. In this paper, a simplified multiple linear regression model was
developed using the concept of Taguchi orthogonal array. The model developed has high
performance based on the computed 𝑅2 and variance inflation factor. The prediction model
developed was validated using resampling technique and the consistency in the root mean squared
error (RMSE) in all the holdout samples indicates the high accuracy of the model developed. The
proposed model has high inference and prediction powers and could be used for predicting cooling
load of office buildings of Bayero University Kano (BUK) or any building with similar
characteristics.

Keywords: Building Cooling Load; Prediction Model; Office Building; Regression Analysis,
Taguchi Analysis

INTRODUCTION

Buildings consume about 40% of the global
energy and represent about 30% contributors of
carbon emissions (Kim et al, 2016; Ravat et al,
2017; Sun et al, 2018). A larger proportion of
the energy consumed in the building sector is
used for the provision of thermal (Koranteng et
al, 2015).
The cooling load of a building is the amount of
heat energy that must be removed from a space
to maintain the parameters (temperature,
relative humidity, and air velocity) within the
acceptable comfort range (Hashim et al., 2018).
According to Hashim et al., (2018) and Obuka
et al., (2015), the determination of building
cooling load is a prerequisite for rightsizing a
building cooling system. Yan et al. (2017)
stated that an inappropriate estimation of
building cooling load causes waste of energy
due to the use of an oversize system or
sacrificing thermal comfort due to the use of
undersize cooling system.
The building cooling loads are determined
using two different approaches, namely: the

forward or classical approach and the inverse
or data-driven approach (Simon, Richard, &
Eric, 2011) . According to Cheng et al. (2017),
a forward or classical approach requires
detailed building information and the use of
physical principles to characterize building
thermal performance. The classical approach of
building cooling load estimation can be
traditional or computer-based. According to
Hashim et al. (2018), the traditional method
includes the following: heat balance (HB)
method, transfer function method (TFM), etc.
The difficulty in solving unsteady equations
with unsteady or dynamic boundary conditions
rendered the traditional method unpopular
which occurs as a result of unsteady thermal
storage characteristics of the building mass. To
overcome this set back of the traditional
method, simulation software such as
EnergyPlus, DOE-2, BLAST, ESP-r, Hongye
etc used. Apart from the complications
involved in using these software, most of them
are very expensive. (Siyue et al., 2013; Qiang
et al., 2015; Chengliang et al., 2019).
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The data-driven models include linear and
non-linear models (Yan et al., 2017).
Chengliang et al. (2019) gave examples of
linear models to include: multiple linear
regression (MLR), autoregressive (AR),
etc.The regression models predict building
cooling load by determining the appropriate
coefficients that are associated with the most
influential inputs (Qiang et al., 2015).
According to Qiang et al. (2015), MLR is the
most commonly used regression model for the
prediction of building cooling load because of
its direct and simplified nature. Numerous
researchers had employed the MLR model to
predict building cooling load and energy
consumption (Joseph et al., 2010; Hae & Eon,
2014; Mohammad et al., 2015; Maged et al.,
2015; Chaoba, 2017; Devindi & Thanuja, 2018;
Navid et al., 2017). The non-linear data-driven

models include the Artificial Neural Network
(ANN), support vector machine (SVM) etc
(Jing & Xiaojuan, 2018), and are complex
because of the difficulty of the models to
converge to an optimal solution (Qiang et al.
2015).
To this end, this paper therefore attempts to
develop a cooling load prediction model for
office buildings of Bayero University Kano
using Taguchi orthogonal array and multiple
linear regression method. The use of Taguchi
method enables the experimenter to reduce the
number of experiment while still obtaining
valid and statistically sound results.

MATERIALS AND METHODS

Study Area

The characteristics of the study area are
presented in Table 1.

Table 1: Characteristics of the Case Study
Title Characteristics

Building type and location Office, Bayero University, Kano, Nigeria.
Latitude: 12.05oN, Longitude: 8.53oE

Elevation: 481m above sea level
Floor height 3.0m
Occupancy (person/m2) 0.068
Office hours 8:00am – 4:00pm

Development of the Cooling Load Prediction
Model

Sampling of office buildings for the study

A convenient non-probability sampling
technique was adopted for sampling the office
blocks in the New Campus of BUK. The
sampled office blocks selected for the study are
presented in Table 2.

Cooling Load Components Analysis of the
Sampled Office Blocks

The architectural plans of the four selected
blocks were obtained from the Physical
Planning Unit (PPU) of BUK. The internal
conditions of all the offices in all the four
blocks selected were studied through physical
inspections. Based on the pertinent information
obtained from the architectural plans and
physical inspection of the office blocks, the
descriptive characteristics of the building were
collected and presented in Table 3.

Table 2: Selected Blocks with their Faculty
S/N Block Name Faculty
1 Phase III Agriculture
2 Dean’s block Computer Science and Information Technology
3 Economics block Social Sciences
4 Departmental block Law
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Table 3: Descriptive Parameters of the Study Area
S/N Item Maximum Minimum Mean
1 Wall length (m) 8.60 3.40 5.60
2 Wall width (m) 9.45 2.95 5.00
3 Wall height (m) 3.45 3.45 3.45
4 Window width (m) 3.94 1.50 3.04
5 Window height (m) 1.50 1.00 1.10
6 Wall thickness (m) 0.27 0.27 0.27
7 Number of staff per office 3.00 1.00 2.00
8 Number of refrigerator per office 2.00 0.00 1.00
9 Number of lighting points per office 4.00 2.00 3.00
10 Number of ceiling fans per office 3.00 1.00 2.00

The performance levels of the pertinent
building cooling load variables were
determined using the information gotten from

the study area and some pertinent standard
factors. Based on the data obtained, three
performance levels were considered for this
study as shown in Table 4.

Table 4: Performance Levels of Cooling Load Variables
S/N Variable Unit Performance Level

1 2 3
1 Gross floor area 𝑚2 10.03 28.00 81.27
2 Ventilation rate 𝐴𝐶𝐻 0.35 0.425 0.50
3 Number of persons per office - 1 2 3
4 Number of lighting points per office - 2 3 4
5 Wattage of bulb 𝑊 18 20 22
6 Number of ceiling fans per office - 1 2 3
7 The wattage of the ceiling fan 𝑊 60 65 70
8 Number of refrigerators per office - 0 1 2
9 Wattage of refrigerator 𝑊 200 275 350
10 Window area, 𝐴𝑔 𝑚2 1.5 3.34 5.91
11 The volume of office, 𝑉𝑏 𝑚3 34.6 96.6 280.38
12 Roof area, 𝐴𝑟 𝑚2 11.582 33.26 938.39
13 Wall area, 𝐴𝑤 𝑚2 11.73 19.32 32.60
14 Window-to-wall-ratio (WWR) % 13 17 18

(a) Heat transfer through the window is the sum of the solar and conductive heat transmissions
and can be determined from equation 1.

𝑄̇𝑤𝑖𝑛 = 877.51𝑙𝑔ℎ𝑔 𝑊𝑎𝑡𝑡𝑠…………………………...………. (1)
The total heat transfer through 𝑁𝑔 numbers of glazing windows can be determined from equation 2.

⇒ 𝑄̇𝑤𝑖𝑛
𝑡𝑜𝑡𝑎𝑙 = 877.51𝑙𝑔ℎ𝑔𝑁𝑔 𝑊𝑎𝑡𝑡𝑠 …………………………….. (2)

b) Heat transfer through the plane wall can be determined from equation 3.

∴ 𝑄̇𝑤𝑎𝑙𝑙 = 24.76 𝐻𝑤
1

2
𝑃𝑚 − 𝐻𝑤 − 𝑁𝑔𝑙𝑔ℎ𝑔 𝑊𝑎𝑡𝑡𝑠 …………….…. (3)

c) The heat transfer through the roof can then be determined from equation (4)
∴ 𝑄̇𝑟𝑜𝑜𝑓 = 0.232𝐴𝑧 𝑊𝑎𝑡𝑡𝑠 ……………………………………. (4)

d) The sensible heat load of infiltration can be determined from equation 5.
∴ 𝑄̇𝑠𝑒𝑛

𝑖𝑛𝑓𝑖𝑙
= 1.293𝐿𝑤𝑊𝑤𝐻𝑤 𝑊𝑎𝑡𝑡𝑠……………………………… (5)

Similarly, the latent heat load of infiltration can be determined from equation 6.
∴ 𝑄̇𝑙𝑎𝑡

𝑖𝑛𝑓𝑖𝑙
= 1.448𝐿𝑤𝑊𝑤𝐻𝑤 𝑊𝑎𝑡𝑡𝑠………………………………. (6)

Therefore, the total infiltration load can be determined from equation 7.
𝑄̇𝑡𝑜𝑡𝑎𝑙
𝑖𝑛𝑓𝑖𝑙

= 𝑄̇𝑠𝑒𝑛
𝑖𝑛𝑓𝑖𝑙

+ 𝑄̇𝑙𝑎𝑡
𝑖𝑛𝑓𝑖𝑙

∴ 𝑄̇𝑡𝑜𝑡𝑎𝑙
𝑖𝑛𝑓𝑖𝑙

= 2.741𝐿𝑤𝑊𝑤𝐻𝑤 𝑊𝑎𝑡𝑡𝑠 ……………………....…. (7)



Bima Journal of Science and Technology, Vol. 5(2) Dec, 2021 ISSN: 2536-6041

212

e) The sensible heat gain from occupants can be determined from equation 8 considering 𝑄𝑠
being 70W for an adult male (ASHRAE-55, 2010). This implies that:

𝑄̇𝑠𝑒𝑛
𝑝𝑝𝑙

= 70𝑁𝑝 𝑊𝑎𝑡𝑡𝑠……..…………………………………. (8)
Similarly, the latent heat gain from occupants can be determined from equation 9 considering 𝑄𝑙
being 45W for an adult male (ASHRAE-55, 2010). This implies that:

𝑄̇𝑙𝑎𝑡
𝑝𝑝𝑙

= 45𝑁𝑝 𝑊𝑎𝑡𝑡𝑠………………………………………… (9)
To account for the fluctuation in occupancy, a factor of 0.7 was applied. Therefore, the total heat
gain from the occupants 𝑄̇𝑡𝑜𝑡𝑎𝑙

𝑝𝑝𝑙 can be determined from equation 10.

𝑄̇𝑡𝑜𝑡𝑎𝑙
𝑝𝑝𝑙

= 0.7 70𝑁𝑝 + 45𝑁𝑝

∴ 𝑄̇𝑡𝑜𝑡𝑎𝑙
𝑝𝑝𝑙

= 80.5𝑁𝑝 𝑊𝑎𝑡𝑡𝑠 …………………………..……….…. (10)
f) Heat gain from lighting 𝑄̇𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 can be determined from equation 11.

𝑄̇𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 = 0.72𝑊𝑙 𝑊𝑎𝑡𝑡𝑠 ……………………..…… (11)
g) Heat gain from equipment/appliance can be determined from equation 12 assuming the total
heat gain from equipment is 𝑃𝑡.

𝑄̇𝑒𝑞𝑢𝑖𝑝 = 1.143𝑃𝑡 𝑊𝑎𝑡𝑡𝑠……………………..……… (12)
Because of the usage of the equipment, the total heat gain from the use of the equipment can be
determined from equation 13.

𝑄̇𝑒𝑞𝑢𝑖𝑝
𝑡𝑜𝑡𝑎𝑙 = 0.5 × 𝑄̇𝑒𝑞𝑢𝑖𝑝

∴ 𝑄̇𝑒𝑞𝑢𝑖𝑝
𝑡𝑜𝑡𝑎𝑙 = 0.571𝑃𝑡 𝑊𝑎𝑡𝑡𝑠 ………………………..….. (13)

Based on the architectural information and the physical inspection carried out, the cooling load
parameters considered for the model development are presented in Table 5.

Table 5: Cooling Load Model Parameters
Level 𝑁𝑝 𝑊𝑏 𝑃𝑒 𝐴𝑟 𝑙𝑔 ℎ𝑔 𝑁𝑔 𝐿𝑤 𝐻𝑤 𝑊𝑤 𝑃𝑚

1 1 18 60 11.58 1.5 1.5 2 3.40 2.8 2.95 25.1

2 2 20 340 33.26 3.34 3.34 3 5.60 3.0 5.0 38.4

3 3 22 770 938.39 5.91 5.91 4 8.60 3.45 9.45 60.2

Determination of Cooling Load Components
using Taguchi Analysis

Taguchi method is a universally accepted
method of conducting design of experiments by
using a special set of arrays called orthogonal
arrays. According to Taguchi and Yokoyama
(1993), orthogonal array 𝐿27 3

13 should be
used for 3-level factors up to 13. In this study,
there are 11 factors and therefore 𝐿27 3

11

orthogonal array was used. The 𝐿27 orthogonal
array of the cooling load model parameters are
presented in Table 6.

Regression Analysis of the Cooling Load

In order to develop the cooling load model,
from Table 3.10, the total cooling load 𝑌 was
regressed against the cooling load model
parameters 𝑁𝑝 , 𝑊𝑏 , 𝑃𝑒 , 𝐴𝑟, 𝑙𝑔, ℎ𝑔, 𝑁𝑔 𝐿𝑤, 𝐻𝑤 ,
𝑊𝑤 , and 𝑃𝑚 using multiple linear regression
technique run on Minitab 19 software. The
regression analysis output presented in Table 8
shows that the P-values of the parameters 𝑊𝑏 ,
𝑃𝑒, 𝐴𝑟, 𝐿𝑤, 𝐻𝑤, and𝑊𝑤 were greater than 0.05
and hence, will statistically have less impact on
the cooling load of the occupied space.
Therefore, they were not considered for the
model development.
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Table 6: 𝐿27 Orthogonal Array of the Cooling load Model Parameters
Runs 𝑵𝒑 𝑾𝒃 𝑷𝒆 𝑨𝒓 𝒍𝒈 𝒉𝒈 𝑵𝒈 𝑳𝒘 𝑯𝒘 𝑾𝒘 𝑷𝒎

1 1 18 60 11.58 1.00 1.0 2 3.4 2.80 2.95 25.1
2 1 18 60 11.58 3.04 1.1 3 5.6 3.00 5.00 38.4
3 1 18 60 11.58 3.94 1.5 4 8.6 3.45 9.45 60.2
4 1 20 340 33.26 1.00 1.0 2 5.6 3.00 5.00 60.2
5 1 20 340 33.26 3.04 1.1 3 8.6 3.45 9.45 25.1
6 1 20 340 33.26 3.94 1.5 4 3.4 2.80 2.95 38.4
7 1 22 770 938.39 1.00 1.0 2 8.6 3.45 9.45 38.4
8 1 22 770 938.39 3.04 1.1 3 3.4 2.80 2.95 60.2
9 1 22 770 938.39 3.94 1.5 4 5.6 3.00 5.00 25.1
10 2 18 340 938.39 1.00 1.1 4 3.4 3.00 9.45 25.1
11 2 18 340 938.39 3.04 1.5 2 5.6 3.45 2.95 38.4
12 2 18 340 938.39 3.94 1.0 3 8.6 2.80 5.00 60.2
13 2 20 770 11.58 1.00 1.1 4 5.6 3.45 2.95 60.2
14 2 20 770 11.58 3.04 1.5 2 8.6 2.80 5.00 25.1
15 2 20 770 11.58 3.94 1.0 3 3.4 3.00 9.45 38.4
16 2 22 60 33.26 1.00 1.1 4 8.6 2.80 5.00 38.4
17 2 22 60 33.26 3.04 1.5 2 3.4 3.00 9.45 60.2
18 2 22 60 33.26 3.94 1.0 3 5.6 3.45 2.95 25.1
19 3 18 770 33.26 1.00 1.5 3 3.4 3.45 5.00 25.1
20 3 18 770 33.26 3.04 1.0 4 5.6 2.80 9.45 38.4
21 3 18 770 33.26 3.94 1.1 2 8.6 3.00 2.95 60.2
22 3 20 60 938.39 1.00 1.5 3 5.6 2.80 9.45 60.2
23 3 20 60 938.39 3.04 1.0 4 8.6 3.00 2.95 25.1
24 3 20 60 938.39 3.94 1.1 2 3.4 3.45 5.00 38.4
25 3 22 340 11.58 1.00 1.5 3 8.6 3.00 2.95 38.4
26 3 22 340 11.58 3.04 1.0 4 3.4 3.45 5.00 60.2
27 3 22 340 11.58 3.94 1.1 2 5.6 2.80 9.45 25.1

The 𝐿27 orthogonal array of the cooling load model parameters and the corresponding computed
cooling load components are presented in Table 7.

Table 7: 𝐿27 Orthogonal Array of Cooling Load Model Parameters and Cooling Load Components
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Table 8: Regression Analysis Output for Cooling Load Model
Training Cooling Load

Parameter
p-Value VIF 𝑹𝟐 Value %

First Model
Training

𝑁𝑝 0.001 1.00
𝑊𝑏 0.997 1.00
𝑃𝑒 0.584 1.00
𝐴𝑟 0.780 1.00
𝑙𝑔 0.000 1.00
ℎ𝑔 0.000 1.00 94.95
𝑁𝑔 0.000 1.00
𝐿𝑤 0.715 1.00
𝐻𝑤 0.643 1.00
𝑊𝑤 0.645 1.00
𝑃𝑚 0.084 1.00

Second Model
Training

𝑁𝑝 0.000 1.00
𝑙𝑔 0.000 1.00
ℎ𝑔 0.000 1.00 94.62

𝑁𝑔 0.000 1.00
𝑃𝑚 0.046 1.00

The cooling load was again regressed against the remaining parameters and the improved
cooling load model developed is given in equation 3.48 and the Pareto chart of the standardized
effects of the parameters in the improved model is shown in Figure 1.

𝑌 =− 14486 − 1440𝑁𝑝 + 3150𝑙𝑔 + 7455ℎ𝑔 + 2916𝑁𝑔 + 38.2𝑃𝑚 ……….… (14)

Figure 1: Pareto Chart of the Improved Parameters
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Performance of the Cooling Load
Prediction Model

ANOVA was employed to determine the
performance of the model developed.
Therefore, coefficient of determination 𝑅2

was used to determine the association
between the dependent variable (cooling load)
and the independent variables (cooling load
parameters). The 𝑅2 value was found to be
94.62% as shown in Table 8. This implies that
94.62% variation in the cooling load 𝑌
could be explained by the cooling load
parameters 𝑁𝑝, 𝑙𝑔, ℎ𝑔, 𝑁𝑔, and 𝑃𝑚.

Variance Inflation Factor (VIF) was used to
check the severity of multicollinearity. VIF
less than 5 as shown in Table 8 for all the
independent parameters shows that there is no
multicollinearity. The ANOVA results
summarized and presented in Table 8 show
that the mathematical correlation of the
building cooling load is statistically
significant at 95% confidence level.

Validation of the Cooling Load Prediction
Model

Resampling validation technique was
employed for the validation of the cooling
load prediction model. The 27 full dataset was
randomly divided into three holdout samples
or sub-samples and the model developed in
the full dataset was validated across the sub-
samples. The performance metrics: root
means squared log error (RMSLE) and the
correlation coefficient of the sub-samples in
this validation technique are presented in
Table 9 and the lines of best fit at 95%
confidence level are shown in Figure 2.

Table 9: Resampling Validation of the
Cooling Load Prediction Model
Sub-
sample

RMSLE Coefficient of
correlation

1 1.62 0.937
2 1.75 0.920
3 1.68 0.992

Sub-sample 1 Sub-sample 2 Sub-sample 3

Figure 2: Line of Best Fits of the Sub-samples of the Resampling Validation

DISCUSSION

The cooling load prediction model parameters
were statistically significant for predicting the
building cooling loads since their P-values are
less than 0.05 as presented in Table 4. The
VIF for the model parameters are all less than
5.0 as shown in Table 8. This indicates that
there is complete absence of the effect of

multicollinearity in the model developed. This
is in concordance with the work of Kaushik et
al. (2020) who stated that VIF of less than 5.0
does not indicate high correlation among the
independent variables and hence, no measure
is required to remove the collinearity. The
value of 𝑅2 of 94.62% as shown in Table 8
implies that the developed prediction model
has high inference power, meaning that
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94.62% variation of the predicted cooling
load could be explained by the cooling load
model parameters. RMSLE and the
correlation coefficients across the sub-
samples in Table 9 as well as the line of best
fits shown in Figure 2 indicate the high
prediction accuracy of the model developed.

CONCLUSION

This paper proposed a cooling load prediction
model for the prediction of cooling loads of
office buildings in the New Campus of
Bayero University Kano, Nigeria. The
performance of the model developed is high
with respect to the P-value and the VIF of the
cooling load model parameters. The
consistencies in the performance metrics: root
mean square log error and the coefficient of
correlation across the sub-samples indicate
that the accuracy of the building cooling load
prediction model developed is high. Therefore,
this proposed model could reliably be used to
predict the cooling load of office buildings in
the New Campus of Bayero University Kano
and, also, in any other building with similar
characteristics.
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