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ABSTRACT

The regular n-gon 𝜃𝑛 = 1 may also contain another m-gon 𝜃𝑚 = 1 inscribed in it. Since both

𝜃𝑛 = 1 and 𝜃𝑚 = 1 can imply and 𝜃𝑛+𝑚 = 1 . Then
𝑑𝑛𝑦

𝑑𝑥𝑛
− 1 = 0 and

𝑑𝑚𝑦

𝑑𝑥𝑚
− 1 = 0 as lengths of

the arcs 𝜃𝑛 = 1 and 𝜃𝑚 = 1 respectively, can imply
𝑑𝑛𝑦

𝑑𝑥𝑛
− 1

𝑑𝑚𝑦

𝑑𝑥𝑚
− 1 = 0 . That is, 𝑦 =

𝑑𝑛+𝑚𝑦

𝑑𝑥𝑛+𝑚
−

𝑑𝑛𝑦

𝑑𝑥𝑛
−

𝑑𝑚𝑦

𝑑𝑥𝑚
+ 1 = 0. This article shows the generalized concept of this idea by applying /

introducing the Semigroup (Galois) theory.

Keywords: Action and Reaction, Regular m-Gon, Solvable Quartics.

INTRODUCTION
Galois Theory, by Evariste Galois (1811 –
1832) was the first to introduce application of
Group Theory to the solution of Algebraic
equations. Basically, it provides the
relationship between the structure of Groups
and the structure of Fields and applies this
relationship to describe how the roots of
Polynomials relate to each other.
It was Newton (1687) that stated that “for
every action, there is an equal and opposite
reaction”, and as well introduced calculus in
studying our place, i.e. our position, in this
system. Haven referred this action as “a
Force”, he then postulated the first law of
motion such that “a body continues in its state
of rest or uniform motion unless it is impacted
upon by a Force”. But then a force f is a
vector quantity, so -f might be a friction or

any form of inpediment.  , ,Hence f - f e is

a group. It seemed as if Newton had the idea
of grouping in his mind. This might be
possible because of his attempt towards
theory of everything. He also believed that
there is nothing in the universe that is not
governable by equations. This idea was
backed by Stephen (2015) who said that the

universe is an internal direct product of
symmetry groups.
The solvability of equations or their non-
solvability was the question of Abel (1824)
which Galois (1864) solved using the
introduction of group theory. For example,

𝑦 = 𝑚𝑥 + 𝑐 is solvable since, 𝑓
−𝑐

𝑚
= 0.

The quadratic equations have the mighty
formula by Shubtra (1879); even mightier
than quadratic equations, because it solves
equations of the form 𝑦 = 𝑎𝑥4 + 𝑏𝑥2 + 𝑐 =
0. The cubics are solvable by Tartaglia’s
(1964) formula. The non-solvability of the
quintics was because, as was asserted by
Heinsten (1964), of 𝐴5 − since alternating
group of length 5 – is not solvable. This is
related to saying five dimensional graph has
no origin; i.e. no five perpendicular lines
meeting at origin. Since the Galois Theory
provides the relationship between the
structure of Groups and the structure of Fields
and applies this relationship to describe how
the roots of Polynomials relate to each other,
the task is to extend this to Calculus. This
study therefore, is intended to further
generalize the use of the Semigroup Theory in
determining the solvability or otherwise of
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Differential Equations as applied by Galois (1864) using, and or, introduction of Group
Theory.

MATERIALS AND METHODS

Consider the set 𝑆 = {𝑥, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒} . Then, by Russel (1919), 𝑆 is a collection; but not a
connection, as in the preface of Higgins (1992) by G. B. Preston.
For 𝑥 to be connected to 𝑎, 𝑆 should be a basement (a length) so that 𝑥, 𝑎 is contained in a
subset of the area A, as length L, times breath, S; i. e. 𝑆 × 𝐿, where 𝐿 = 𝑆 in this case.

Thus, any subset of 𝑆2 is a relation (R). Hence, 𝑥 can be connected with 𝑎 by 𝑥𝑅𝑎.
An equivalence relation [10,11] is also a subset of R. If 𝑥 can be connected with 𝑎 by 𝑥 = 𝑎, as
well as with 𝑏 by 𝑥 = 𝑏; then, 𝑥 − 𝑎 = 0 and 𝑥 − 𝑏 = 0.

Hence, 𝑥 − 𝑎 𝑥 − 𝑏 = 0. That is, 𝑥2 − 𝑎 + 𝑏 𝑥 + 𝑎𝑏 = 0.
From Smith and Rowland (2002), to look at the earth in its true shape, its picture can be taken
from the moon. Thus, for 𝑦 = 𝑥2 − 𝑎 + 𝑏 𝑥 + 𝑎𝑏 such that: 𝑦 = 𝑓 𝑥 = 0 ; then the quantics
can be expressed as 𝑦 = (𝑥 − 𝑎)2(𝑥 − 𝑏)2 . This implies that there are solvable quintics, for
example, 𝑦 = 𝑥 − 𝑎 3 𝑥 − 𝑏 (𝑥 − 𝑐) , not necessary by radicals. This is because the only
highest radical solution known is 𝑦 = 𝑥 − 𝑎 𝑥 − 𝑏 (𝑥 − 𝑐).
Again, 𝑥𝑅𝑎 is not the only suitable predictable connection between 𝑥𝑛, and 𝑎 or 𝑥 = 𝑎. Another
one is 𝑥𝑛𝑅 𝑎, where 𝑎 = 𝑏𝑛 or so, and analogously is (𝑥 − 𝑎)𝑛 𝑅 0.

Since 𝑦 = 𝑥 − 𝑎 𝑥 − 𝑏 (𝑥 − 𝑐) is solvable, then 𝑦 = (𝑥𝑢 − 𝑎)(𝑥𝑣 − 𝑏)(𝑥𝑤 − 𝑐) is also

solvable. Hence, this implies that
𝑑𝑢𝑦

𝑑𝑥𝑢
− 𝑎

𝑑𝑣𝑦

𝑑𝑥𝑣
− 𝑏

𝑑𝑤𝑦

𝑑𝑥𝑤
− 𝑐 = 0 is solvable.

SOLUTIONS

How is
𝑑𝑢𝑦

𝑑𝑥𝑢
− 𝑎 = 0 solvable?

Let v be a vector. Then 𝑣 = 𝑎𝑖 + 𝑏𝑗, with magnitude, 𝑎2 + 𝑏2.
This is saying, to have length of an arc, one needs a plane that contains the arc Let one of

the vector planes be 𝑎 + 𝑖𝑏 or 𝑎 + 𝑏𝑗 or 𝑎𝑖 + 𝑏 or 𝑎𝑗 + 𝑏 or down the line, where 𝑖 =
𝑗 = −1.
Let 𝑧 = 𝑎 + 𝑏𝑖 or the down. Then, (𝑎, 𝑏) ⊆ 𝑉 and 𝑧 = 𝑟𝑒𝑖𝜃;
where 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃, because 𝑎 = 𝑟 𝑐𝑜𝑠𝜃 and 𝑏 = 𝑟 𝑠𝑖𝑛𝜃, where 0𝑎ത തത = 𝑟.

Hence, 𝑧𝑚 = 𝑟𝑚𝑒𝑖𝑚𝜃, where 𝑒𝑖𝑚𝜃 = cos𝑚𝜃 + 𝑖 sin𝑚𝜃.

From Seymour, et. al.(2009), let 𝑚 =
1

𝑛
; then 𝑧

1

𝑛 = 𝑟
1

𝑛𝑒
𝜃

𝑛
𝑖 = 𝑟

1

𝑛(𝑐𝑜𝑠
𝜃

𝑛
+ 𝑖 𝑠𝑖𝑛

𝜃

𝑛
).

For
𝑑𝑛𝑦

𝑑𝑥𝑛
= 1, then

𝑑𝑦

𝑑𝑥
= 1

1

𝑛𝑒
𝜃

𝑛
𝑖, where 𝜃 = 0; which implies

𝑑𝑦

𝑑𝑥
= 1

0

𝑛𝑒0𝑖.

But, this is just one of the expected solutions of
𝑑𝑛𝑦

𝑑𝑥𝑛
− 1 = 0 and 𝜃 = 360 is the same as 𝜃 = 0

becouse 𝑒360𝑖 = 𝑐𝑜𝑠360 + 𝑖 sin360 and 𝑒0𝑖 = 𝑐𝑜𝑠0 + 𝑖 sin0. Applying a partition of
360 = 2𝜋 into 𝑛 number of times therefore gives:
𝑑𝑦

𝑑𝑥
= 1

1

𝑛𝑒
2𝜋

𝑛
𝑖,

𝑑𝑦

𝑑𝑥
= 1

2

𝑛𝑒
2𝜋

𝑛
2𝑖,

𝑑𝑦

𝑑𝑥
= 1

3

𝑛𝑒
2𝜋

𝑛
3𝑖, …,

𝑑𝑦

𝑑𝑥
= 1

𝑛

𝑛𝑒
2𝜋

𝑛
𝑛𝑖 ;

𝑑𝑦

𝑑𝑥
= 1

0

𝑛𝑒
2𝜋

𝑛
(0)𝑖,

𝑑𝑦

𝑑𝑥
= 1

1

𝑛𝑒
2𝜋

𝑛
𝑖,

𝑑𝑦

𝑑𝑥
= 1

2

𝑛𝑒
2𝜋

𝑛
2𝑖,

𝑑𝑦

𝑑𝑥
= 1

3

𝑛𝑒
2𝜋

𝑛
3𝑖, …,

𝑑𝑦

𝑑𝑥
= 1

𝑛

𝑛𝑒
2𝜋

𝑛
𝑛𝑖. Thus,

𝑑𝑦

𝑑𝑥
= 𝑐𝑜𝑠

2𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

2𝜋

𝑛
,
𝑑𝑦

𝑑𝑥
= 𝑐𝑜𝑠

4𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

4𝜋

𝑛
,

𝑑𝑦

𝑑𝑥
= 𝑐𝑜𝑠

6𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

6𝜋

𝑛
,
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𝑑𝑦

𝑑𝑥
= 𝑐𝑜𝑠

8𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

8𝜋

𝑛
, .. . …,

𝑑𝑦

𝑑𝑥
= cos 2𝜋 + 𝑖 sin 2𝜋 .

This implies:
𝑑𝑦

𝑑𝑥
− 𝑐𝑜𝑠

2𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

2𝜋

𝑛
×

𝑑𝑦

𝑑𝑥
− 𝑐𝑜𝑠

4𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

4𝜋

𝑛

×
𝑑𝑦

𝑑𝑥
− 𝑐𝑜𝑠

6𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

6𝜋

𝑛
,
𝑑𝑦

𝑑𝑥
− 𝑐𝑜𝑠

8𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

8𝜋

𝑛
,

…,
𝑑𝑦

𝑑𝑥
− cos 2𝜋 + 𝑖 sin 2𝜋 =

𝑑𝑛𝑦

𝑑𝑥𝑛
− 1 ;

𝑑𝑦

𝑑𝑥
− 𝑛 𝑎 𝑐𝑜𝑠

2𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

2𝜋

𝑛
×

𝑑𝑦

𝑑𝑥
− 𝑛 𝑎 𝑐𝑜𝑠

4𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

4𝜋

𝑛

×
𝑑𝑦

𝑑𝑥
− 𝑛 𝑎 𝑐𝑜𝑠

6𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

6𝜋

𝑛
,

𝑑𝑦

𝑑𝑥
− 𝑛 𝑎 𝑐𝑜𝑠

8𝜋

𝑛
+ 𝑖 𝑠𝑖𝑛

8𝜋

𝑛
,…,

𝑑𝑦

𝑑𝑥
− 𝑛 𝑎 cos 2𝜋 + 𝑖 sin 2𝜋

=
𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎.

This is related to the fundamental theorem of algebra: that every group is a direct product of
cyclic groups, each of prime power order [14].

RESULTS

1. Since 𝑓 𝑆 = {𝑓 𝑥 , 𝑓 𝑎 , 𝑓 𝑏 , 𝑓 𝑐 , 𝑓 𝑑 , 𝑓(𝑒)} and 𝑓' 𝑥 𝑅 𝑓(𝑎);

Then 𝑓𝑛 𝑥 𝑅𝑓(𝑎) such as
𝑑𝑛𝑦

𝑑𝑥𝑛
− 1 = 0 is solvable, and so does

𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎 = 0;

Also
𝑑𝑚𝑦

𝑑𝑥𝑚
− 𝑏 = 0 is also solvable, and so does 𝑦 =

𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎

𝑑𝑚𝑦

𝑑𝑥𝑚
− 𝑏 = 0.

That is, 𝑦 =
𝑑𝑛+𝑚𝑦

𝑑𝑥𝑛+𝑚
− 𝑏

𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎

𝑑𝑚𝑦

𝑑𝑥𝑚
+ 𝑎𝑏 = 0.

This has tackled 𝑦 =
𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎

𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑏 = 0 , 𝑦 =

𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎

𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎 = 0.

These ideas could be summed to 𝑦 =
𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎

𝑑𝑚𝑦

𝑑𝑥𝑚
− 𝑏

𝑑𝑢𝑦

𝑑𝑥𝑢
− 𝑐

𝑑𝑣𝑦

𝑑𝑥𝑣
− 𝑑 for

solvability – related to solvability of the quartics or 𝑦 =
𝑑𝑛𝑦

𝑑𝑥𝑛
− 𝑎

2 𝑑𝑚𝑦

𝑑𝑥𝑚
− 𝑏

2

or down the

line.
2. For 𝑓̇ 𝑆 = {𝑓' 𝑥 , 𝑓' 𝑎1 , 𝑓' 𝑎2 , 𝑓' 𝑎3 , …, 𝑓' 𝑎𝑛 , …}, one can use:

𝑓' 𝑎𝑢 ≡ 𝑓' 𝑎𝑣 𝑚𝑜𝑑 𝑤 if and only if 𝑓' 𝑎𝑢−𝑣

𝑤
∈ 𝑓̇ 𝑆 , where 𝑓̇ 𝑆 is a set of

differentiable functions and 𝑓' is
𝑑

𝑑𝑥
𝑓(𝑥). Hence,

𝑑𝑛𝑦

𝑑𝑥𝑛
− 1 = 0 is solvable using

𝑑𝑎𝑦

𝑑𝑥𝑎
−

1 ≡
𝑑𝑏𝑦

𝑑𝑥𝑏
− 1 𝑚𝑜𝑑 𝑑 if and only if

𝑑
𝑎−𝑏
𝑑 𝑦

𝑑𝑥
𝑎−𝑏
𝑑

− 1 ∈
𝑑𝑛𝑦

𝑑𝑥𝑛
− 1.

Thus, define the canonical map 𝜃: 𝑆 → 𝑆
𝐼 by 𝜃

𝑑𝑛𝑦

𝑑𝑥𝑛
− 1 =

𝑑𝑛𝑚𝑦

𝑑𝑥𝑛𝑚
− 1.

3. The Onto-Homomorphism can be shown as follows:

(i) Homomorphism: The 𝜃
𝑑𝑎𝑦

𝑑𝑥𝑎
= 1 ×

𝑑𝑏𝑦

𝑑𝑥𝑏
= 1 = 𝜃

𝑑𝑎+𝑏𝑦

𝑑𝑥𝑎+𝑏
− 1 ;

and by definition of 𝜃, it is
𝑑 𝑎+𝑏 𝑚𝑦

𝑑𝑥 𝑎+𝑏 𝑚 = 1 .
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That is,
𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 ×

𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 which is 𝜃

𝑑𝑎𝑦

𝑑𝑥𝑎
= 1 × 𝜃

𝑑𝑏𝑦

𝑑𝑥𝑏
= 1 .

(ii) Ontoness: Let 𝜃−1
𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 = 𝜃−1

𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 .

Then
𝑑𝑎𝑦

𝑑𝑥𝑎
= 1 =

𝑑𝑏𝑦

𝑑𝑥𝑏
= 1 .


𝑑𝑎𝑦

𝑑𝑥𝑎
= 1 ×

𝑑𝑎𝑦

𝑑𝑥𝑎
= 1 ×…𝑚 𝑡𝑖𝑚𝑒𝑠

=
𝑑𝑏𝑦

𝑑𝑥𝑏
= 1 ×

𝑑𝑏𝑦

𝑑𝑥𝑏
= 1 ×…𝑚 𝑡𝑖𝑚𝑒𝑠.


𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 =

𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 .

4. Define the canonical map 𝜃: 𝑆 𝐼 →
𝑆
𝐼

𝐽
by 𝜃

𝑑𝑛𝑚𝑦

𝑑𝑥𝑛𝑚
− 1 =

𝑑𝑛𝑚𝑝𝑦

𝑑𝑥𝑛𝑚𝑝 − 1 .; then the

onto homomorphism can be shown as follows:

(i) Homomorphism: The 𝜃
𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 ×

𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 = 𝜃

𝑑 𝑎+𝑏 𝑚𝑦

𝑑𝑥 𝑎+𝑏 𝑚 − 1

and by definition of 𝜃, it is
𝑑 𝑎+𝑏 𝑚𝑝𝑦

𝑑𝑥 𝑎+𝑏 𝑚𝑝 = 1 ;


𝑑𝑎𝑚𝑝𝑦

𝑑𝑥𝑎𝑚𝑝 = 1 ×
𝑑𝑏𝑚𝑝𝑦

𝑑𝑥𝑏𝑚𝑝 = 1 ; which is 𝜃
𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 × 𝜃

𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 .

(ii) For Ontoness:

Let 𝜃−1
𝑑𝑎𝑚𝑝𝑦

𝑑𝑥𝑎𝑚𝑝 = 1 = 𝜃−1
𝑑𝑏𝑚𝑝𝑦

𝑑𝑥𝑏𝑚𝑝 = 1 . Then
𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 =

𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 . 

𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 ×

𝑑𝑎𝑚𝑦

𝑑𝑥𝑎𝑚
= 1 ×…𝑝 𝑡𝑖𝑚𝑒𝑠

=
𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 ×

𝑑𝑏𝑚𝑦

𝑑𝑥𝑏𝑚
= 1 ×…𝑝 𝑡𝑖𝑚𝑒𝑠.


𝑑𝑎𝑚𝑝𝑦

𝑑𝑥𝑎𝑚𝑝 = 1 =
𝑑𝑏𝑚𝑝𝑦

𝑑𝑥𝑏𝑚𝑝 = 1 .

CONCLUSION

Thus it can be concluded that, if 𝑆 = 𝑔𝑥, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑑, 𝑔𝑒 , where 𝑔𝑒+? = 𝑔𝑥, then S is a
group an example of which is 𝜃𝑛 = 1;

That is, 𝜃𝑛 = 1 = 𝜃𝑛−1 = 1, 𝜃𝑛−2 = 1, 𝜃𝑛−3 = 1, 𝜃𝑛−4 = 1, …, 𝜃𝑛−𝑛 = 1 . Thus,

𝜃𝑛−𝑢 ≡ 𝜃𝑛−𝑣𝑚𝑜𝑑 𝑤 if and only if 𝜃
𝑛−𝑢 −(𝑛−𝑣)

𝑤 ∈ [𝜃𝑛 = 1].

But, a naturally existing semigroup is 𝜃𝑛 = 𝜃. That is,
𝑑𝑛𝑦

𝑑𝑥𝑛
−

𝑑𝑦

𝑑𝑥
= 0.

Hence,
𝑑𝑦

𝑑𝑥

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
− 1 = 0. This implies 𝑦 is a constant: 0 𝑑𝑥 = 0 + 𝑐∫ , where

𝑐 is a constant. This constant could be must likely be 0.

Another Semigroup is
𝑑∞𝑦

𝑑𝑥∞
− 1 = 1,

𝑑𝑦

𝑑𝑥
− 1,

𝑑2𝑦

𝑑𝑥2
− 1…,

𝑑𝑛𝑦

𝑑𝑥𝑛
− 1, … .

In this case, one can apply:
𝑑𝑎𝑦

𝑑𝑥𝑎
− 1 ≡

𝑑𝑏𝑦

𝑑𝑥𝑏
− 1 𝑚𝑜𝑑 𝑑 if and only if

𝑑
𝑎−𝑏
𝑑 𝑦

𝑑𝑥
𝑎−𝑏
𝑑

= 1 ∈
𝑑𝑛𝑦

𝑑𝑥𝑛
− 1 .
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