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ABSTRACT 

In this work, the collocation method via third kind Chebyshev and Laguerre polynomials as basis 

functions were developed and used to solve Volterra integro-differential equations (IDEs) using 

the standard collocation method. An assumed approximate solution is substituted into the given 

problem, thus resulted in more unknown constants to be determined. After simplification and 

collocations, resulted in linear algebraic equations which are then solved via maple 18 to obtain 

unknown constants that are involved. Comparisons were made with the two trial solutions 

mentioned above in terms of errors obtained. Numerical examples were given to illustrate the 

performance of the method for various orders. However, the third kind Chebyshev polynomial 

basis exhibits better accuracy over the Laguerre polynomials as can be seen from the tables of 

errors presented. 

Keywords: Collocation Method, Volterra Intrgro-differential Equations, Chebyshev Polynomial, 

and  Laguerre Polynomial. 

 

INTRODUCTİON 

Integro-differential equations are usually 

difficult to solve analytically so it is required 

to obtain an efficient approximate solution. 

Consequently, there had been extraordinary 

enthusiasm by several authors towards 

obtaining the numerical solutions of this class 

of problems. In literature, there exist 

numerous numerical techniques to solve 

Integro-differential equation such as 

Wavelet-Galerkin Method (WGM) by 

(Avudainayan & Vani 2000),  Homotopy 

Analysis Method (HAM) by (Kunjan Shah & 

Twinkle Singh, 2015). 

Furthermore, the application of the Taylor, 

Chebyshev, Hermite, Legendre, and 

Laguerre polynomials and their numerical 

merits in solving integral and integro-

differential equations (IDEs) numerically 

have been discussed in (Akyuz & Sezer, 

2003), (Maleknejad & Mahmoudi, 2003), 

(Taiwo, O. A., Alim, A. T. & Akanmu, M. A., 

2014), and (Richard & Roderick,  2010). 

 

Legendre polynomials first arose in the 

problem of expressing the Newtonian 

potential of a conservative force field in an 

infinite series involving the distance variable 

of two points and their included Centre angle. 

Other similar problems dealing with either 

gravitational potential or electrostatic 
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potential and steady-state heat conduction 

problems in spherical solids, also lead to 

Legendre polynomials. Other polynomials 

which commonly occur in applications are 

Laguerre and Hermite. They play an 

important role in quantum mechanics, and in 

probability theory but the focus of this 

research work is on third kind Chebyshev and 

Laguerre polynomials for solving Volterra 

Integro-Differential Equations (VIDEs). 

Also, many techniques such as a new 

algorithm for calculating Adomian 

polynomials, (Hashim, 2006), Chebyshev 

polynomials by (Eslahchi, M. R., Mehdi, D. & 

Sanaz, A., 2012),  Chebyshev and Legendre by 

(Abubakar & Taiwo, 2014), Homotopy 

Perturbation Method (HPM), (Wazwaz, 

2011) and, Variation Iteration 

Decomposition Method (VIDM) by (Ignatius 

& Mamadu, 2016). Application of Adomian's 

decomposition method on Integro-

differential equation also examined by 

(Wazwaz, 2001) and others have been used 

to derive solutions of some classes of integro-

differential equations. 

The great work did by the researchers 

aforementioned motivated us and eventually 

led to the proposal of a numerical 

approximation method that is efficient and 

accurate with less computational work to 

obtain an approximate solution of high order 

linear Volterra integro-differential equations 

of the form  

𝑃01𝜑
𝑚(𝑧) + 𝑃11𝜑

𝑚−1(𝑧) + ⋯+ 𝑃𝑚−1𝜑
′(𝑧)

+ 𝑃𝑚𝜑(𝑧)

+ 𝜆∫ 𝐾(𝑧, 𝑠)𝜑(𝑡)𝑑𝑡
𝑖(𝑧)

ℎ(𝑧)

= 𝑓(𝑧)     (1) 

 

 

Subject to the conditions  

𝜑(0) = 𝐶0 ,𝜑
′(0) = 𝐶1 ,𝜑

′′(0)

= 𝐶2 ,⋯ ,𝜑
(𝑚−1)(0)

= 𝐶𝑚−1                           (2)     

where 𝑃′𝑠 are real constants;  𝑖, ℎ are finite 

constants; 𝐾(𝑧, 𝑠), and 𝑓(𝑧) are given real-valued 

functions and 𝜑′𝑠 are unknown constants to be 

determined.   

The present work is aimed at producing exact 

and approximate solutions with less 

cumbersome and easy to handle by third kind 

Chebyshev and Laguerre polynomials 

methods, thus, the main objectives are to 

transform the integro-differential equation 

ine equation (1) subject to initial conditiobns 

in equation (2) into a system of linear 

algebraic equations, obtain the solution of the 

linear algebraic equation, test the efficiency 

of the methods on some numerical examples, 

and compare the two methods with each 

other.  

BASIC DEFINITIONS  

Definition 2.1: 

Integro-Differential Equation -  an Integro-

Differential Equation (IDE) is  an equation in 

which the unknown function 𝜑(𝑧) appears under 

the integral sign and contains an ordinary 

derivative 𝜑(𝑚) as well. A standard integro-

differential equation is of the  form: 

𝜑(𝑚)(𝑧) = 𝑓(𝑧) + 𝜆∫ 𝐾(𝑧, 𝑠)𝜑(𝑠)𝑑𝑠
𝑖(𝑧)

ℎ(𝑧)

(3) 

Where 𝑖(𝑧) and ℎ(𝑧) are limits of integration 

which may be constants, variables or combined. 

𝜆is a constant parameter,   𝑓(𝑧) is a given 

function and 𝐾(𝑧, 𝑠) is a known function of two 

variables 𝑧 and 𝑠, called the kernel.                                    

We have Fredholm integro-differential equation 

if the upper limit of integration is a constant and 
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it is called Volterra integro-differential equation 

if the limit 𝜑(𝑧) is replaced with a variable of 

integration 𝑧.  

Definition 2.2: 

Collocation Method:  is a method involving the 

determination of an approximate solution in a 

suitable set of functions sometimes called trial 

solution and also is a method of evaluating a 

given differential equation at some points to 

nullify the values of an ordinary differential 

equation at those points.  

Definition 2.3: 

Exact Solution: a solution is called an exact 

solution if it can be expressed in a closed form, 

such as a polynomial, exponential function, 

trigonometric function, or the combination of two 

or more of these elementary functions. 

Definition 2.4: 

Approximate Solution: an approximate solution 

is an inexact representation of the exact solution 

that is still close enough to be used instead of 

exact and it is denoted by 𝜁𝑀(𝑧) , where 𝑀 is the 

degree of the approximant used in the calculation. 

Methods of the approximate solution are usually 

adopted because complete information needed to 

arrive at the exact solution may not be given. In 

this work, the approximate solution used is given 

as  

𝜁𝑚(𝑧) =∑𝑐𝑖𝜑𝑖(𝑧)                                       (4)

𝑀

𝑖=0

 

where𝑐𝑖,   𝑖 = 0, 1, 2, … ,𝑀 are unknown 

constants to be determined, 𝜑𝑖(𝑧)(𝑖 ≥ 0) is the 

basis functions which is either the third kind of 

Chebyshev or Laguerre Polynomials and 𝑀 is the 

degree of approximating Polynomials.  

Definition 2.5: 

The third kind Chebyshev Polynomial in [-1, 1 ] 

of degree m is denoted by 𝑉𝑚(𝑧) and defined by  

𝑉𝑚(𝑧) = cos
(𝑚 +

1
2
)𝜗

cos (
𝜗
2
)
,

where𝑧 = cos𝜗         (5) 

This class of Chebyshev Polynomials satisfies the 

following recurrence relation  

𝑉0(𝑧) = 1,    𝑉1(𝑧) = 2𝑧 − 1, 𝑉𝑚(𝑧) =
2𝑧𝑉𝑚−1(𝑧) − 𝑉𝑚−2(𝑧), 𝑚 = 2, 3,⋯             (6)                               

The third kind Chebyshev Polynomial in [𝛼, 𝛽] 

of degree m, is denoted by 𝑉𝑚
∗(𝑧) and is defined  

 by 𝑉𝑚
∗(𝑧) = cos

(𝑚+
1

2
)𝜗

cos(
𝜗

2
)
 , 

 cos 𝜗 =  
2𝑧 − (𝛼 + 𝛽)

𝛽 − 𝛼
𝜗𝜖[0, 𝜋]                       (7) 

All the results of Chebyshev polynomials of the 

third kind can be easily transformed to give the 

corresponding results for their shifted ones. The 

orthogonality relations of  𝑉𝑚
∗(𝑧) on [𝛼, 𝛽] with 

respect to the weight functions √
𝑧−𝛼

𝛽−𝑧
 is given by  

∫ √
𝑧−𝛼

𝛽−𝑧

𝛽

𝛼
= {

(𝛽 − 𝛼)
𝜋

2
, 𝑚 = 𝑛

0,   𝑚 ≠ 𝑛
 Doh, et al. (2015) 

Definition 2.6: 

The Laguerre polynomials are defined as  

𝐿𝑚(𝑧) =∑(−1)𝑗
𝑀

𝑗=0

𝑚!

(𝑗!)2(𝑚 − 𝑗)!

=∑(−1)
1

𝑗!

𝑀

𝑗=0

(
𝑚

𝑗
) 𝑧𝑗,   

𝑚 = 0, 1, 2,⋯.                              (8) 

 

The recurrence relation is  

𝐿𝑚(𝑧) =
𝑒

𝑚!

𝑧 𝑑𝑚

𝑑𝑧𝑚
(𝑒−𝑧𝑧𝑚),     

𝑚 = 2, 3, 4,⋯.                                       (9) 
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where 

𝐿0(𝑧) = 1, 𝐿1(𝑧) = 1 − 𝑥 .                 

Using this formula, the first few Laguerre 

Polynomials can be obtained as                                        

𝐿2(𝑧) =
𝑒

2!

𝑧 𝑑2

𝑑𝑧2
(𝑒−𝑧𝑧2) 

=
1

2
(𝑧2 − 4𝑧 + 2)                  (10) 

𝐿3(𝑧) =
𝑒

3!

𝑧 𝑑3

𝑑𝑧3
(𝑒−𝑧𝑧3) 

=
1

3!
(6 − 18𝑧 − 9𝑧2 − 𝑧3)  (11) 

⋮ 

𝑚 =
1

𝑚!
((−𝑧))𝑚 +𝑚2(−𝑧)𝑚−1 +⋯

+𝑚(𝑚!)(−𝑧) + 𝑚!) 

and so on.      Laguerre polynomials (2001)        

Problem considered and methodology 

In this section, we applied the standard 

collocation method to solve equation (1) using 

the following basis functions: 

(i) Third kind Chebyshev Polynomials and  

(ii) Laguerre Polynomials. 

Standard Collocation Method by Third kind 

Chebyshev Polynomials 

To solve the general problem given in equation 

(1) subject to the conditions given in equation (2) 

using the standard collocation method with third 

kind Chebyshev polynomials as basis functions, 

we assumed an approximate solution of the form: 

𝜑(𝑧) =∑𝑐𝑖𝑉𝑖
∗(𝑧)                                        (12)    

𝑀

𝑖=0

 

where  𝑐𝑖,   𝑖 = 0, 1, 2, … ,𝑀 are unknown 

constants and 𝑉𝑖
∗(𝑧)(𝑖 ≥ 0)are Chebyshev 

polynomials of the third kind defined in equation 

(5) to (7), 𝑀 is the degree of approximating 

Polynomials, where in most cases the better 

approximate solution (i.e. closer to the exact 

solution) is produced by larger M, and 𝑐𝑖is the 

specialized coordinate called Degree of freedom. 

Thus, differentiating equation (12) with respect to 

z m times, we obtain 

𝜑′𝑚(𝑧) =∑𝑐𝑖𝑉𝑖
∗′(𝑧)

𝑀

𝑖=0

 

𝜑′′𝑚(𝑧) =∑𝑐𝑖𝑉𝑖
∗′′(𝑧)

𝑀

𝑖=0

 

⋮ 

𝜑(𝑚)(𝑧) =∑𝑐𝑖𝑉𝑖
∗(𝑚)(𝑧)               (13)

𝑀

𝑖=0

 

Hence, substituting equations (12) and (13) 

into equation (1), we obtain 

𝑃01 ∑𝑐𝑖𝑉𝑖
(𝑚)(𝑧)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝑉𝑖
(𝑚−1)(𝑧)

𝑀

𝑖=0

+ 

𝑃21 ∑𝑐𝑖𝑉𝑖
(𝑚−1)(𝑧)

𝑀

𝑖=0

+⋯+ 𝑃𝑚1 ∑𝑐𝑖𝑉𝑖
(𝑚)(𝑧)

𝑀

𝑖=0

 

+𝜆∫ 𝐾(𝑧, 𝑠) (∑𝑐𝑖𝑉𝑖(𝑠)

𝑀

𝑖=0

)𝑑𝑠
𝑖(𝑧)

ℎ(𝑧)

= 𝑓(𝑧)    (14) 

Evaluating the integral part of the equation 

(14) to obtain  

𝑃01 ∑𝑐𝑖𝑉𝑖
(𝑚)
(𝑧)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝑉𝑖
(𝑚−1)

(𝑧)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝑉𝑖
(𝑚−1)(𝑧)

𝑀

𝑖=0

+ ⋯+ 𝑃𝑚1 ∑𝑐𝑖𝑉𝑖
(𝑚)(𝑧)

𝑀

𝑖=0

 

+𝜆𝐺(𝑧) = 𝑓(𝑧)                                    (15) 

where 𝐺(𝑧) = ∫ 𝐾(𝑧, 𝑠)(∑ 𝑐𝑖𝑉𝑖(𝑠)
𝑀
𝑖=0 )𝑑𝑠

𝑖(𝑧)

ℎ(𝑧)
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Thus, collocating equation (15) at the 

point 𝑧 = 𝑧𝑗, we obtain 

𝑃01 ∑𝑐𝑖𝑉𝑖
(𝑚)
(𝑧𝑗)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝑉𝑖
(𝑚−1)

(𝑧𝑗)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝑉𝑖
(𝑚−1)(𝑧𝑗)

𝑀

𝑖=0

+ ⋯+ 𝑃𝑚1 ∑𝑐𝑖𝑉𝑖
(𝑚)(𝑧𝑗)

𝑀

𝑖=0

 

+𝜆𝐺(𝑧𝑗) = 𝑓(𝑧𝑗)                                    (16) 

and 

𝑧𝑗 = 𝛼 +
(𝛽 − 𝛼)𝑗

𝑀 + 1
; 𝑗 = 1, 2, … ,𝑀         (17) 

Thus, equation (16) is then put into matrix 

form as 

𝐷𝑧 = 𝑏                                                          (18)  

where  

𝐷 = 

(

 
 

𝑑11 𝑑12 𝑑13
𝑑21 𝑑22 𝑑23
𝑑31 𝑑32 𝑑33

⋯

𝑑1,𝑚
𝑑2,𝑚
𝑑3,𝑚

⋮ ⋱ ⋮
𝑑𝑚,1 𝑑𝑚,2 𝑑𝑚,3 ⋯ 𝑑𝑚,𝑚)

 
 
        (19) 

𝑧 = (𝑧1, 𝑧2, 𝑧3, ⋯ , 𝑧𝑚)
𝑇                             (20) 

𝑏 = (𝑓(𝑏1), 𝑓(𝑏2), 𝑓(𝑏3)… , 𝑓(𝑏𝑚))
𝑇    (21) 

Thus, equation (16) gives rise to (𝑀 − 1)system 

of linear algebraic equations in (𝑀 + 1) 
unknown constants and m extra equations are 

obtained using the conditions given in equation 

(2). Altogether, we now have(𝑀 + 1)  system of 

linear algebraic equations. These equations are 

then put in matrix form and solved via Maple 18 

software to obtain  (𝑀 + 1) unknown constants 

𝑐𝑖(𝑖 ≥ 0)which are then substituted back into the 

approximate solution given by equation (12). 

 

Standard Collocation Method by Laguerre 

Polynomials 

To solve the general problem given in equation 

(1) subject to the conditions given in equation (2) 

using the standard collocation method with 

Laguerre polynomials as basis functions, we 

assumed an approximate solution of the form: 

𝑄𝑚(𝑧) =∑𝑐𝑖𝐿𝑖(𝑧)                           (22)

𝑀

𝑖=0

 

where  𝑐𝑖,   𝑖 = 0, 1, 2, … ,𝑀 are unknown 

constants and 𝐿𝑖(𝑧)(𝑖 ≥ 0) are Laguerre 

polynomials defined in equations (8) to (11),   

is the degree of approximating Polynomials, 

where in most cases the better approximate 

solution (i.e. closer to the exact solution) is 

produced by larger . Thus, differentiating 

equation (17) with respect to z m times, we obtain 

𝑄′
𝑚
(𝑧) =∑𝑐𝑖𝐿

′
𝑖(𝑧)

𝑀

𝑖=0

 

𝑄′′𝑚(𝑧) =∑𝑐𝑖𝐿′′𝑖(𝑧)

𝑀

𝑖=0

 

⋮ 

𝑄(𝑚)(𝑧) =∑𝑐𝑖𝐿𝑖
(𝑚)(𝑧)                    (23)

𝑀

𝑖=0

 

Hence, substituting equations (22) and (23) 

into equation (1), we obtain 

𝑄01 ∑𝑐𝑖𝐿𝑖
(𝑚)(𝑧)

𝑀

𝑖=0

+ 𝑄11 ∑𝑐𝑖𝐿𝑖
(𝑚−1)(𝑧)

𝑀

𝑖=0

 

+𝑄21 ∑𝑐𝑖𝐿𝑖
(𝑚−2)(𝑧)

𝑀

𝑖=0

+ ⋯+ 𝑄𝑚1 ∑𝑐𝑖𝐿𝑖(𝑧)

𝑀

𝑖=0

 

+𝜆∫ 𝐾(𝑧, 𝑠)(∑𝑐𝑖𝐿𝑖(𝑠)

𝑀

𝑖=0

)𝑑𝑠 = 𝑓(𝑧)
𝑖(𝑧)

ℎ(𝑧)

(24) 
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Evaluating the integral part of equation (24) 

to obtain  

𝑄01 ∑𝑐𝑖𝐿𝑖
(𝑚)(𝑧)

𝑀

𝑖=0

+ 𝑄11 ∑𝑐𝑖𝐿𝑖
(𝑚−1)(𝑧)

𝑀

𝑖=0

 

+𝑄21 ∑𝑐𝑖𝐿𝑖
(𝑚−2)

(𝑧)

𝑀

𝑖=0

+ ⋯

+ 𝑄∑𝑐𝑖𝐿𝑖(𝑧) +

𝑀

𝑖=0

𝜆𝐺(𝑧)

= 𝑓(𝑧),                                  (25) 

where 𝐺(𝑧) = ∫ 𝐾(𝑧, 𝑠)(∑ 𝑐𝑖𝐿𝑖(𝑠)
𝑀
𝑖=0 )𝑑𝑠

𝑖(𝑧)

ℎ(𝑧)
   

Thus, collocating equation (25) at the point =

𝑧𝑗 , we obtain 

𝑄01 ∑𝑐𝑖𝐿𝑖
(𝑚)
(𝑧𝑗)

𝑀

𝑖=0

+ 𝑄11 ∑𝑐𝑖𝐿𝑖
(𝑚−1)

(𝑧𝑗)

𝑀

𝑖=0

 

+𝑄21 ∑𝑐𝑖𝐿𝑖
(𝑚−2)

(𝑧𝑗)

𝑀

𝑖=0

+ ⋯

+ 𝑄∑𝑐𝑖𝐿𝑖(𝑧𝑗) +

𝑀

𝑖=0

𝜆𝐺(𝑧𝑗)

= 𝑓(𝑧𝑗),                                  (26) 

and 

 𝑧𝑗 = 𝛼 +
(𝛽 − 𝛼)𝑗

𝑀 + 1
;  𝑗 = 1, 2, … ,𝑀               (27) 

Thus, equation (15) is then put into matrix 

form as 

𝑃𝑧 = 𝑑                                                           (28)  

where  

𝑃 = 

(

 
 

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

⋯

𝑝1,𝑚
𝑝2,𝑚
𝑝3,𝑚

⋮ ⋱ ⋮
𝑝𝑚,1 𝑝𝑚,2 𝑝𝑚,3 ⋯ 𝑝𝑚,𝑚)

 
 
           (29) 

𝑧 = (𝑧1, 𝑧2, 𝑧3, ⋯ , 𝑧𝑚)
𝑇                             (30) 

𝑑 = (𝑓(𝑑1), 𝑓(𝑑2), 𝑓(𝑑3)… , 𝑓(𝑑𝑚))
𝑇  (31) 

Thus, equation (26) gives rise to (𝑀 − 1)system 

of linear algebraic equations in (𝑀 + 1) 
unknown constants and m extra equations are 

obtained using the conditions given in 

equation (2). Altogether, we have (𝑀 + 1)  
system of linear algebraic equations. These 

equations are put into matrix form and solved 

via Maple 18 software to obtain  (𝑀 + 1) 

unknown constants 𝑐𝑖(𝑖 ≥ 0)which are then 

substituted back into the approximate 

solution given by equation (22).  

Numerical Examples and Results 

In this section, we have demonstrated the 

standard collocation approximation method on 

high order integro-differential equations using 

Chebyshev polynomials of the third kind and 

Laguerre Polynomials as the basis functions. The 

results obtained are compared with each other on 

three problems to test for the effectiveness and 

efficiency of our methods via the Maple 18 

software. 

Numerical Example 1  

Consider the second-order linear Volterra 

integro-differential equation  

𝜑′′(𝑧) = 1 + ∫ (𝑧 − 𝑠)𝜑(𝑠)𝑑𝑠.
𝑧

0

                 (31) 

with initial conditions 

𝜑(0) = 1,     𝜑′(0) = 0                            (32)  

 

The exact solution is given as 

𝜑(𝑧) = cos ℎ(𝑧)                                        (33)                                                                      

Wazwaz (2011). 

 

Numerical Example 2  

Consider the third-order linear Volterra integro-

differential equation. 
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𝜑′′′(𝑧) = −1 + 𝑧 −∫ (𝑧 − 𝑠)𝜑(𝑠)𝑑𝑠.
𝑧

0

        (33) 

with initial conditions 

𝜑(0) = 1,    𝜑′(0) = −1,   𝜑′
′(0) = 1 (35)  

 

The exact solution is given as 

𝜑(𝑧) = 𝑒−𝑧                                                 (36) 

Wazwaz (2011). 

 

 

Numerical Example 3  

Consider the fourth-order linear Volterra 

integro-differential equation. 

𝜑(′𝑣)(𝑧) = 3𝑒𝑧 + 𝑒2𝑧 −∫ 𝑒2(𝑧−𝑠)𝜑(𝑠)𝑑𝑠.
𝑧

0

    (37) 

with initial conditions 

𝜑(0) = 0,    𝜑′(0) = 1,   𝜑′
′(0)

= 2,   𝜑′′′(0) = 3           (38)  

The exact solution is given as 

𝜑(𝑧) = 𝑧𝑒𝑧                                                 (39) 

Wazwaz (2011). 

 

Remark: We defined error as:  

 

𝐸𝑟𝑟𝑜𝑟 = |𝜑(𝑧) − 𝜑𝑀(𝑧)|; 

 

where, 𝜑(𝑧)is the exact solution and 𝜑𝑀(𝑧) 

is our approximate solution obtained for the 

various values of M.  

 

 

 

 

Table 1: Results and Errors obtained for Example 1: 

Z Exact Result Results by 

Chebyshev Polys. 

For Case M = 5 

Results by 

Laguerre Polys. 

For Case M = 5 

Error by 

Chebyshev 

Polys. 

Error by 

Laguerre 

Polys. 

0.0 1.000000000 0.999999999 0.999999991 1.0000e-09 9.0000e-09 

0.1 1.005004168 1.005001453 1.005001453 2.7150e-06 2.7150e-06 

0.2 1.020066756 1.020059361 1.020059365 7.3910e-06 7.3910e-06 

0.3 1.045338514 1.045326566 1.045326566 1.1948e-05 1.1948e-05 

0.4 1.081072372 1.081055998 1.081055998 1.6374e-05 1.6374e-05 

0.5 1.127625965 1.127605022 1.127605021 2.0943e-05 2.0944e-05 

0.6 1.185465218 1.185439717 1.185439716 2.5501e-05 2.5502e-05 

0.7 1.255169006 1.255139183 1.255139181 2.9823e-05 2.9825e-05 

0.8 1.337434946 1.337399845 1.337399843 3.5101e-05 3.5103e-05 

0.9 1.433086385 1.433039756 1.433039754 4.6629e-05 4.6631e-05 

1.0 1.543080635 1.543002899 1.543002895 7.7736e-05 7.7740e-05 
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Table 2: Results and Errors obtained for Example 2: 

Z Exact Result Results by 

Chebyshev Polys. 

For Case M = 6 

Results by 

Laguerre Polys. 

For Case M = 6 

Error by 

Chebyshev 

Polys. 

Error by 

Laguerre 

Polys. 

0.0 1.000000000 1.000000000 0.999999991 0.00000000 5.0000e-10 

0.1 0.904837418 0.904837455 0.904837453 3.6500e-08 3.4800e-08 

0.2 0.8187307531 0.818730963 0.818730960 2.0980e-07 2.0690e-07 

0.3 0.7408182207 0.740818754 0.740818741 5.3310e-07 5.2900e-07 

0.4 0.6703200460 0.670321047 0.670321042 1.0015e-06 9.9620e-07 

0.5 0.6065306597 0.606532278 0.606532272 1.6185e-06 1.6119e-06 

0.6 0.5488116361 0.548814017 0.548814009 2.3809e-06 2.3732e-06 

0.7 0.4965853038 0.496588597 0.496588588 3.2932e-06 3.2843e-06 

0.8 0.4493289641 0.449333439 0.449333429 4.4754e-06 4.4652e-06 

0.9 0.4065696597 0.406576081 0.406569651 6.4217e-06 6.4103e-06 

1.0 0.3678794412 0.367889905 0.367889893 1.0464e-05 1.0451e-05 

 

Table 3: Results and Errors obtained for Example 3: 

z Exact Result Results by 

Chebyshev Polys. 

For Case M = 6 

Results by 

Laguerre Polys. 

For Case M = 6 

Error by 

Chebyshev 

Polys. 

Error by 

Laguerre 

Polys. 

0.0 0.000000000 7.2070e-10 5.6300e-07 7.2070e-10 5.6300e-07 

0.1 0.110517092 0.110517177 0.110516751 8.5200e-08 3.3190e-07 

0.2 0.244280552 0.244281613 0.244281300 1.0609e-06 7.4850e-07 

0.3 0.404957642 0.404961911 0.404961669 4.2686e-06 4.0264e-06 

0.4 0.596729879 0.596740885 0.596740686 1.1006e-05 1.0807e-05 

0.5 0.824360635 0.824383233 0.824383054 2.2597e-05 2.2419e-05 

0.6 1.093271280 1.093311589 1.093311417 4.0309e-05 4.0137e-05 

0.7 1.409626895 1.409690973 1.409690797 6.4308e-05 6.3902e-05 

0.8 1.780432743 1.780521604 1.780521419 8.8861e-05 8.8676e-05 

0.9 2.213642800 2.213740116 2.213739911 9.7316e-05 9.7120e-05 

1.0 2.718281828 2.718329139 2.718328935 4.7311e-05 4.7107e-05 

 

Table 1, 2, and, 3 show the numerical solution obtained in terms of approximate solution and the 

errors for the linear integro-differential equations solved through third kind Chebyshev and 

Laguerre Polynomials basis function. We also observed from the examples solved that both 

methods converge close to the exact solution in a view iterations and lower error. 



                                                                                                                                                     

200 
 

Bima Journal of Science and Technology, Vol. 5(1) June, 2021 ISSN: 2536-6041 

 

CONCLUSION 

In this work, we have demonstrated the 

collocation approximation method for solving 

high-order Volterra integro-differential 

equations through the third kind Chebyshev 

Polynomials and Laguerre Polynomials as basis 

functions and compared the results obtained with 

each other. The results obtained by the third kind 

Chebyshev Polynomials as basis functions get 

closer to the exact solution than the results by 

Laguerre Polynomials in some examples. 

However, we also observed that the results 

obtained yield a good approximation to the exact 

solution only in a few iterations in all the 

problems considered (as can be seen from tables 

of results). Thus, we conclude that the methods 

are reliable and effective for the class of problems 

considered. This work is limited to linear integro-

differential equation, it is therefore recommended 

for the immediate solution of other types of 

equations, for example, Fractional differential 

equations, Integro-differential difference 

equations, and Partial differential equations. 
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