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ABSTRACT 

In this article, the probe pulse (that is, of single-photon quantum states) which can be stored in long 

live cavity dark state is investigated. The transfer of the single photon state to the collective cavity 

dark state can be accomplished with nearly a hundred percent efficiently by the method of 

intracavity EIT and assumption of quantum impedance matching condition whereby the classical 

driving field is adiabatically switched off while the probe laser is inside the dense ensemble of atoms 

and cos θ is optimized for any input pulse respectively is clearly described. It is noted that, this 

method of using an optically-dense many-atom medium is far superior and efficient than the technique 

with single atoms processed in the strong coupling system. 

 

Key Words: Quantum Impedance Matching, Coupling of cavity-dark state, Free-field modes, 
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INTRODUCTION 

The coherent control of quantum systems has 

been given much attention and experimental 

effort. Its applications range from the possibility 

of studying fundamental aspects of quantum 

Physics to quantum information processing. 

The practical implementation of quantum 

processing protocols requires coherent 

manipulation of a large number of coupled 

quantum systems which is an extremely 

difficult task. A wide variety of physical 

systems and phenomena have been proposed 

as quantum systems. Some of them are 

trapped ions, atoms in optical lattices, cavity 

quantum electrodynamics (Cavity QED), as 

well as the three-level atom. 

Coherence effects in three-level atom system 

bring about two interesting but related 

phenomena: Coherent Population Trapping 

(CPT) and Electromagnetically Induced 

Transparency (EIT), hence these concepts are 

closely related and one precedes the other 

(Khan et al., 2017). Knutson, (2020) 

discovered that the fluorescence from a gas 

of sodium atoms vanishes when the splitting 

of the hyperfine levels of the atoms matches 
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the mode spacing of the applied multimode 

laser. The discovery of CPT has led to the 

realization that an otherwise opaque medium 

could be rendered transparent by the 

application of two coherent laser fields that 

allows for optical pumping between allowed 

transitions for which all the population 

(atoms and their electrons) decay into   dark 

non absorbing state (dark state). This later on 

led to the realization of the concept of 

Electromagnetically Induced Transparency 

(EIT). 

The initial investigational demonstration of 

EIT was reported in 1991 by (Boller et al., 

1991) using a gas of strontium atoms. 

Subsequent experiments (Kasapi et al., 1995, 

Schmidt et al., 1996, Kash et al., 1999; Shiet 

et al., 2015; Khoa et al., 2017) focused not 

only on demonstrating transparency of the 

medium, but also on measuring the associated 

reduction of the speed of light. Zafar and his 

co-workers were able to use EIT to measure 

light speeds as low as 17 m/s (Zafar and Salim, 

2015). Shortly after, it became apparent that 

EIT had potential applications in the field of 

quantum information processing as it was 

demonstrated that the laser pulses could not 

only be slowed down, but in fact brought to a 

complete stop in the medium. It thus became 

possible to use the medium as a quantum 

memory, transferring the quantum state of free-

field photons to the ensemble of gas phase 

atoms and retrieval of these states. 

Succeeding experiments demonstrates that 

EIT can be used as a control tool to compress 

and spatially stop the probe pulse and 

regenerate this pulse at a later time in a cloud 

of cold sodium atoms (Liu et al., 2001). Light 

consist of photons, so photons can be made 

ideal carriers of quantum information 

because: they travel at the speeds of 

300,000km/s, they are robust and readily 

available. On the other hand atoms present 

reliable and long-lived storage and processing 

units. Therefore, the challenge is to develop a 

technique for coherent transfer of quantum 

information carried by light to atoms and vice 

versa.  In other words, it is necessary to have 

a quantum memory that is capable of 

”storing” and ”releasing” quantum states on 

the level of individual photon qubits. Such a 

device needs to have a stringent requirement 

of coherence in order to achieve an-

unidirectional transfer (from field to atoms or 

vice versa) 

Therefore this article focuses on schemes for 

trapping, storage, and retrieval of single- 

photon quantum states of the probe pulse 

within an optically dense coherently driven 

electromagnetically-induced transparent 

medium inside an optical resonator by the 

method of intracavity EIT. This technique 

deals with the manipulation of the properties 

of a cavity filled with three-level Λ-type 

atoms by an external classical field. The 

single-photon quantum states will be 

considered for storage in the dark state formed 

by the two coherent fields interacting with an 

optically dense medium simultaneously. Other 

techniques for storage and retrieval of light 

utilizes dark-state polaritons with EIT 

technique (Fleischhauer et al., 2000). This 

form-stable (dark-state polariton) coupled 

excitation of light and matter has been used in 

three-level Λ atom to establish quantum 

memories for light. In this paper, the storage 

and retrieval of the probe pulse for which 



                                                                                                                                                     

165 
 

Bima Journal of Science and Technology, Vol. 5(1) June, 2021 ISSN: 2536-6041 

 

these pulses are multiplexed and injected into 

the cavity system at a regular period is studied. 

This time-entangled pulses are considered for 

storage under adiabatic photon transfer 

schemes under dynamical quantum impedance 

matching conditions. The concept of stopped 

light resulting from EIT will be utilized in the 

storage and retrieval of quantum states of 

photons 

The paper also emphases on re-deriving and 

generalizing the equations governing the 

storage and retrieval of single-photon 

quantum states in the quantum states of 

collective atomic excitations in an 

electromagnetically-induced transparent 

medium recently established by (Distante et 

al., 2017). After establishing these governing 

relations, the storage and retrieval of a single 

high intensity pulse described 

mathematically by the hyperbolic secant 

pulse. This pulse is injected into this optically 

dense coherently driven electromagnetically 

induced transparent medium inside a single-

mode cavity by the technique of intracavity 

electromagnetically induced transparency 

(EIT) is investigated (Fleischhauer et al., 

2000). For this reason, a single-photon wave 

packets is referred to as photon guns (Vallone 

et al., 2016). The underlying physical 

mechanism of adiabatic photon storage and 

subsequent retrieval is based on intracavity 

EIT by which properties of a cavity filled with 

three-level Λ-type atoms are manipulated by 

an external control field. The control field is 

vital in the loading and unloading process of 

cavity filled electromagnetically induced-

transparent medium and should always be 

treated in an adiabatic fashion. 

 

The Λ-type three-level atom and dark 

state 

Considering an optically dense ensemble of N 

identical three-level atoms confined within an 

optical cavity. Of the two dipole-allowed 

transitions one is coupled to the cavity mode 

with a coupling constant g, while the other 

optical transition is driven by a field with Rabi 

frequency Ω(t) as depicted in Fig 1. The 

interaction Hamiltonian   

  

 
Figure 1: The three-level atom with a 

quantized field and classical field. Of this 

system can be expressed as the sum of the two 

dipole-allowed transitions in the Λ-type three 

level atom system transition pathways given 

by: 

int a b a cH H H   ,    Eq. (1) 

The meta-stable states ( c  and b ) interact 

with the excited state through two different 

transitions, the probe laser (quantized field) and 

the coupling laser (classical field) respectively 

and initially, all the population is in the state 

b . The interaction Hamiltonian resulting 

from eq.(1), was defined by (Fleischhaeur et 

al., 2000) as follows: 
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 
1 1

ˆ ˆ . .
N N

i ivt i

ab ac

i i

H g a t e h c 

 

      

  Eq. (2) 

Here, 
i

v ii
v   is the flip operator of the 

ith atom between states   and v , where 

µ, ν = a, b, c. g is the coupling constant 

between the atoms and the field modes 

(vacuum Rabi frequency), h.c stands for the 

Hermitian conjugate, and  ̂     a and a    ̂ † are the 

annihilation and creation operators respectively. 

For simplicity, we assume that g is equal for all 

atoms. The first term of the interaction 

Hamiltonian describes the process in which 

atoms are excited from the lower energy state 

b  to the upper state a  and single photon 

modes are annihilated. The second term of 

this 

Hamiltoniandescribestheprocessinwhichato

msaretakenfromtheexcited state a  to the 

lower state b  and single photon modes are 

created. The terms in the h.c. describes the 

reverse process respectively of these two 

terms. 

We define a collective atomic operator 

(Welter et al., 2018) by the sum of flip 

operators of every atom, 

1

1 N
i

ab ab

iN
 



  ,  
1

N
i

ac ac

i

 


   Eq. (3) 

With N the number of atoms and assuming 

that only symmetric collective states are 

involved in the process. With these new 

operators, the part of the total Hamiltonian 

describing the interaction between photons 

and atoms will take the form: 

   

 

 int
ˆ . .ivt

ab acH g Na t e h c      

 Eq. (4) 

where the interaction strength between photons 

and the collective atomic excitations is 

assumed N times larger than the 

interaction between the light and a single 

atom, such that only certain specific 

collective states of the atomic excitations are 

allowed. Of special interest are superposition 

states of light and collective states of matter 

that do not interact with the optical fields, 

namely the so-called dark state. More 

explicitly the dark state is obtained under the 

condition of two-photon resonance from the 

interaction Hamiltonian, when the energy 

difference between the metastable states 

equals the energy difference per photon of the 

two fields. The resulting eigenstate takes the 

following form: 

  

 

   
2 2

cos sin
b g N c

D t b t c
g N

 
 

  
 

   Eq. (5) 

where  
2 2

cos
g N

t 

 
  and 

 
2 2

sin
g N

g N
t

 
 , with    arctan

g N
t


  

the mixing angle. The bright-eigenstate also 

corresponding to the same interaction is 

given by:   

   
2 2

,0
sin cos

g N b c
B t b t c

g N
 


  

 

   Eq. (6) 

The adiabatic single-photon state transfer 

into the dark state is still obtained at the two-

photon resonance and the dark state 
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corresponding to a single excitation in one of 

the metastable state (see fig. 1) is given by: 

 

 

   
2 2

,1 ,0
,1 cos ,1 sin ,0

b g N c
D i i t b i t c

g N
 

 
    

 

  Eq. (7) 

Where the phase factor i  is introduced and 

has no effect on the population in the dark 

state, the photonic number state inside the 

cavity mode is denoted by n  and the mixing 

angle is defined as above. 

It is noted note from eq. (7) is analogous to 

eq. (5) and therefore all concepts applied in 

the case of the two classical fields will be 

applied here. It is convenient to note that the 

state D  decouples from both classical and 

quantum fields due to interference. This is 

evident because the dark state ,1D  has no 

component of ,0a  but rather a linear 

superposition of the meta-stables states b  

and c Also, the action on the dark state by 

the interaction Hamiltonian eq. (9) shows the 

decoupling of the dark state from the two 

fields, 

 ,1 0H D      (8) 

This shows that all population is essentially 

trapped in the dark state with one cavity 

photon. A particular case of interest is when 

g N  . The state ,1D  reduces to: 

2 2
,1 ,0

ig N
D c

g N


 
   (9) 

The state ,1D   corresponds nearly identical 

to the state  ,0 . . ,1 ,0c i e D c . In this 

case, the single excitation is basically shared 

amongst the atoms.  After constructing the 

dark state that holds up all the population, 

we will then look at the principle that would 

be used to achieve the mechanism of storage 

and retrieval. 

The principle of intracavity EIT proposed by 

Fleischhauer et al., (2000) will now be 

discussed. To have a complete description of 

the interaction, we take into account 

dissipation and decay into the analysis. With 

respect to dissipation in this system, three 

important mechanisms must be analyzed: 

1. The dark state ,1D  is not 

susceptible to decay from the excited 

atomic levels (i.e. state a )  since the 

,1D  has no component of a .  

2. The dark state is susceptible to decay 

of its constituents (lower level 

coherence between b  and c ). The 

decay bc from ,1D  sets the ultimate 

(maximum) upper limit on the life-

time of the dark state ,1D . 

3. The effect of the finite Q   value of 

the cavity brings about the cavity 

decay. The bare cavity has a decay 

rate given by  . This cavity decay 

rate   will lead to the decay of the 

dark state. The only part of the dark 

state that can decay is the one that 

contains a single photon. i.e the part 

proportional to ,1b . The probability 

of being in state ,1b   is given by: 

 
2

,1 ,1P t b D    Eq. (10)   
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and this leads to

     
2 2cos cosP t i t t        Eq. (11) 

Therefore, the decay of the dark state due to 

the cavity is given by: 

 2cos
2 2

D
t

 
    Eq. (12) 

where the factor 1
2

 is just a convention in the 

definition of decay and thus the cavity decay 

rate is 
2

 . 

Furthermore, if  2cos 1t , this 

corresponds to the case g N  , the 

effect of the cavity decay rate is 

considerately reduced in the limit Eq. (7) is 

given by: 

   

 

2 2
,1 ,1 ,0

g N
D i b c

g Ng N

 
   

   
    

 Eq.  (13) 

It is apparent that ,1D , contains only small 

( )
g N

  component of the single photon state

,1b , this brings about an increase in the 

lifetime of the combined atom-cavity system 

and it’s an extremely important feature of 

intracavity EIT. Intracavity EIT has one more 

important feature which is obtained by 

varying the mixing angle θ (t) (i.e. by 

adiabatically switching off and on the Rabi 

frequency of the classical driving field Ω (t)), 

the coupling of dark state to its environment 

is attained. This is entirely related to the 

concept of stopped light whereby one can 

adiabatically switch off the Rabi frequency 

for the storage process and later on switch it 

back on for the retrieval process. 

 

Single-photon Excitation by Adiabatic 

Coupling of Cavity-dark state to free-field 

modes 

 

Consider the coupling of the cavity-dark state 

to free-fields modes inside the cavity. The 

optically dense ensemble of atoms is placed 

inside the Fabry-Pérot cavity (resonator).  The 

z-axis is parallel to the propagation of the input 

and outgoing modes. The point z = 0 

characterizes the position of the partially 

transmitting input mirror of the cavity. The 

other mirror of the cavity is assumed to be 

totally reflecting. The configuration of the 

dense ensemble of atoms in the Fabry-Pérot 

cavity is depicted in Fig. 2. 
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Figure 2: (a.) Cavity set up with N atoms interacting with the cavity mode and a classical 

control field. γ is the empty cavity decay rate. (b.) Simplified optical cavity with an optically dense 

ensemble of atoms .Ec, Ein, Eout are circulating, input, and output components of the field. (c.) 

shows that the atoms in the optical medium are described by 3-level atom. 

 

In order to construct the Hamiltonian 

governing the input-output process, we need 

to first of all consider the field inside and 

outside the cavity. As stated in chapter one, 

the field inside the cavity with a single mode 

is governed by the Hamiltonian given by 

†ˆ ˆ
cH a a ,   Eq. (14) 

where ωc is the angular frequency of the field 

in the cavity and â†, â are the creation and 

annihilation operators of the field within the 

cavity respectively. The field outside this 

cavity has many modes and we denote the 

modes by ‘k’. Therefore, the Hamiltonian 

governing the field outside this cavity is 

given by: 

†ˆ ˆ
f k kH b b    Eq. (15) 

where ωf  is the angular frequency of the free-

space field outside the cavity and b̂†
k, ̂bk are the 

creation and annihilation operators of the field 

outside the cavity with mode k. 

In order to model the coupling of the free-

space modes to the selected cavity mode, a 

continuum of   free-space-modes with field 

operators b̂k couples to selected cavity mode 

with a coupling constant κ. For simplicity, we 

consider that the coupling constant is the 

same for all the relevant modes. The 

interaction Hamiltonian describing the 

coupling of the cavity and this free field mode 

is of the form: 

† ˆˆ . .cav free k

k

H k a b h c       Eq. (16) 

where h.c stands for Hermitian conjugate, â† 

is the creation operator and b̂k  is the 

annihilation operator of the free-field with 

mode k. eq.(16) is a reasonable ansatz because 

we assume that the single cavity mode is 

linearly coupled to the outside modes and in 
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the most simple case, the coupling is the same 

for all ‘k’-modes. The linear coupling 

guarantees that if double the field strength 

outside, one can also find the field strength to 

be doubled inside. The first term in eq. (16) 

describes a process in which a photon in the 

outside world mode ‘k’ will be annihilated 

and at the same time a photon inside the cavity 

is created while the Hermitian conjugate, 

describes the opposite process where a cavity 

photon is annihilated and an outside photon in 

(an arbitrary) mode ‘k’ is created. 

Let us examine the representation of the input 

single-photon quantum states. Since the 

number states n form a complete set, we 

may expand the input wave packet  in t  

according to    
0

in n

n

t t n 




 . Also, our 

input pulses are assumed of single-state 

photons with various modes k so they can be 

represented in a general single-photon state 

as: 

 
0

1in

in k k

n

t 


    Eq. (17) 

where      0

0
ki t tin in

k kt t e


 
 

  and 1k  is a 

bosonic Fock state and stands for 

0, ,1 , ,0k and
2

1in

kk
  . In what 

follows, the field going to be described by an 

envelope wave function  ,in z t  defined 

by: 

  ˆ, 0 ikz

in k k inz t b e            Eq. (18) 

Here we change to the continuum limit by 

performing the following transformation: 

   ,k kt t    and  2
L

k
dk   where L 

is the quantization length. This transform eq. 

(18) into: 

   , ,
2

in ikz

in k k

L
z t d t e

c
  


    Eq. (19) 

Equation (19) admits a soliton from the 

nonlinear Schrödinger equation. The 

normalization condition 

 
2

2
, 1inL

k kc
d t      of Fourier 

coefficient implies the normalization of the 

input wave function. 

 
2

, 1in

dz
z t

L
    Eq. (20) 

 

The Input-Output Problem 

If the input single-photon wave-packet 

interacts with the combined systems of 

cavity-mode and the atoms, the general state 

can be written in the state given by: 

 

         ,1,0 ,0,0 ,0,0 ,0,1k k k k kt b t b a t a c t c t b    

 (21) 

where the state ,1,0kb  denotes the state 

corresponding to the atomic system in the 

collective state b , the cavity mode in 

single-photon state 1  and there are no 

photons in the outside modes 0k  combining 

eqs.(4) and (6) the total interaction in the 

atom-cavity together with the free-field 

modes is given by: 

    

  † ˆˆ ˆ . .ivt

ab ac k

k

H g Na t e k a b h c     

                                   Eq. (22) 

We lay down the relation governing the 
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input-output process by taking into account 

the two-photon resonance condition. This 

assumption requires the bare frequency of the 

cavity mode to coincide with the a b  

transition of the atom as well as the carrier 

frequency of the input wave-packet i.e 

0c ab a bv         and also the classical 

driving field should be in resonance with the 

a c  transition, i.e 
acv  . The equations of 

motion are obtained by solving the 

Schrodinger equation in the interaction 

diagram given by: 

d
i H

dt
     Eq. (23) 

where   is a state vector of the system. The 

relaxations relating to the spontaneous 

emission and dephasing of the system is 

added phenomenologically thought it can be 

derived quantum mechanically when one 

considers the joint density matrix of the atom 

and all modes of the vacuum radiation field. 

In general, considering the motion of 

resonant atomic systems, the density matrix 

equations can be adopted. Nevertheless, as 

demonstrated in (Lukin et al., 1998) for EIT 

– like coherent atomic systems, the density 

matrix equations can be replaced by the 

probability amplitude equations without any 

difference. Evaluating eq.(28) the time 

evolution of the amplitudes are given by

: 

          
2

a t a t ig Nb t i c t


                            Eq. (24)   

     k

k

b t ig Na t ik t                           Eq. (25)   

   c t i a t                            Eq. (26)  

     k k kt i t ikb t                            Eq. (27) 

where 0k k     is the detuning of the free-field modes from the cavity resonance and 

0 c abv   . To describe the adiabatic transfer process, it commence by incorporating eq.(6) and 

(7) into eqs.(24)-(27) and obtain the corresponding probability amplitude equations given by: 

        0
2
aa t a t i B t


         Eq. (28)   

           0 sin k

k

B t i t D t i a t ik t t          Eq. (29)   

         cos k

k

D t i t B t k t t        Eq. (30)   
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           sin cosk k kt i t ik t B t k t D t         Eq, (31) 

Terms proportional to  t  describe non-adiabatic coupling between the bright and dark state. We 

cab adiabatically eliminate the excited state and bright state amplitude and disregard non-adiabatic 

corrections. This elimination leads to the following equations: 

     cos k

k

D t k t t        Eq, (32)  

       cosk k kt i t k t D t          Eq, (33) 

Solving the above two equations simultaneously and obtain: 

    
2 2

0k

k

d
D t

dt


 
  

 
      Eq, (34) 

Equation (34) shows that, the total probability of finding the system in a free-field single-photon 

or in the cavity dark state is conserved. Therefore, under adiabatic conditions, there is only an 

exchange of probability between free-field state and the cavity dark state. After the input process, 

we now determine the form of the output field.  Changing to the continuum limit by performing 

the following transformation: ξk(t) → ξ(ωk, t). Eq.(3.33) becomes: 

          , , cosk k kt i t k t D t        .   Eq, (35) 

Integrating Eq. (35), leads to: 

              0

0
0, , cosk k

tt t i tin

k k
t

t t e k d D e


       
    

   Eq, (36) 

Taking Eq. (35) into the continuum light and obtain: 

          0

0cos ,
2

ki t tin

k k

kL
D t t d t e

c
   



  
    Eq.  (37) 

and substituting Eq. (36) into (37) leads to: 

   

     

       

0

2

cos ,
2

cos cos
2

k

k k

t i t

k
t

kL
D t t d t

c

L
k t d D d e

c



   


    


  







 

 Eq, (38) 

In the first term, the identified wave function of input photon at z = 0. In the second term, using 

the Markov-limit    2ki t

kd e t


  
  

  , and this reduces to: 

               0

0

2

0cos , cos cos
2

k
ti t tin

k k
t

kL k L
D t t d t e t d D t

c c
          



  
     Eq, (39) 
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Utilizing the Dirac delta property    d t f t 



  , the first ODE given by: 

               2

2
cos 0, cosc

L in
D t t t t t D t                Eq, (40) 

Where the empty-cavity decay rate 
2k L
c

   is introduced and set: 

         0

00, ,
2

ki t tin

in k k

L
t d t e

c
  



  
   ,             Eq, (41) 

In order to solve eq.(40) for D(t), we can simplify the above equation  by posing    2

2
cosp t t   

and      cos 0,c
inL

f t t t    , then: 

        D p t D t f t               Eq, (42) 

Using the Green function technique for first order ordinary differential equation (ODE), we have 

obtain the solution of Eq. (42) given by: 

      
 

 
0

t
t p d

t
D t e f d

 

 
   .            Eq, (43) 

Substituting the expressions of  p t  and  f t , taking into account the time 0t  sufficiently before 

any excitation of the above equation is given by: 

        
 2

2
0

0

cos

cos 0,

t

t
dt

c
inL t

D t e d
   

    
  

 .            Eq, (44) 

The above equation shows that, there is a linear relation between the dark state D(t) and the input 

field as it enters the cavity system at z = 0. One observe that,  cos t  has to be small enough to 

enhance the transfer of single-photon states from the applied input field. A direct substitution of 

eq.(44) into (36) yields the input-output relation given by: 

           
 2

2

0

cos

0, 0, cos cos 0,

t
t d

out in in
t

t t t d e



  

    
                  Eq, (45) 

In view of the condition for adiabatic elimination of the bright state amplitude. By substituting 
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eq.(45) into (29-32) and taking into account the Markov limit, we find that, the adiabatic following 

occurs when: 

  2

0 a ,   2

0
a

T


 ,   2

0
a

a
T


 .    Eq, (46) 

It is worth nothing that, these conditions also ensure the spontaneous Raman scattering in order 

that the cavity mode are negligible. Since the characteristic input-pulse length and the 

characteristic times T have to be larger or equal to the cavity decay time 1  . The first condition 

is the precise one. 

It is relevant to take note that, in order to ensure adiabaticity it is sufficient that: 

    2

ag N            Eq, (47) 

This condition opposes that corresponding to 

an adiabatic transfer with a single atom. In 

case of a single-atom, the strong-coupling 

regime corresponding (at least) to 2

ag  . 

Looking at the implications of eqs. (53) and 

(54) if cosθ is constant in time, the atom 

would just cause a change of cavity decay 

rate, according to γ→γcos2θ(t). Therefore, by 

increasing the atom density and equally 

decreasing cosθ, the effective life time of 

cavity mode can be increased. 

The method which permits one to capture and 

subsequently release a single-photon state of 

light field is now described. To achieve this 

objective, a techniques of adiabatic transfers 

is utilized (Ottaviani et al., 2006). To give 

reason to the analysis carried out below, we 

note that, the state ,1D  eq. (7) couples to the 

free-field light modes only by means of a 

mixture of state ,1b   From eq. (32), it is 

observed that, the dark states coupling to the 

free field light modes depend on cosθ(t). To 

store the photon state, we first accumulate the 

field in a cavity mode and then, adiabatically 

switching off the driving field Ω(t), an initial 

free-space wave packet can be stored in a 

long-lived atom-like dark state. The stored 

free space wave packet can be released by 

simply adiabatically turning on the Rabi 

frequency of the driving field. The storing 

and the release process would now be 

discussed thoroughly. 

 

Optimization of Input: Quantum 

Impedance Matching 

 

The quantum Impedance Matching would be 

in principle, optimizing the time dependence 

of  cos t  such that, the dark-state 

amplitude will asymptotically get close to 

unity. This can occur for a bandwidth of the 

incoming wave which is less or at most equal 

to the bare cavity bandwidth. i.e, for a wave 

packet which is longer than the bare-cavity 

decay time 1  . Furthermore, the time when 

the adiabatic transfer starts must coincide 

with the arrival time of the photon wave 

packet. 

In order to achieve a maximum transfer of 

free-field photons into cavity photons, the 

outgoing field components should be 

minimized. This can be accomplished by 

using the destructive interference between 
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the directly reflected and circulatory 

components of the input field. The condition 

for destructive interference for the directly 

reflected and circulatory field can be 

obtained by time derivative of eq. (3.45) and 

setting 0out out   this leads to: 

     2ln cos ln cos
2

in

d d
t t t

dt dt


      

           Eq, (48) 

This equation has a physical interpretation; 

the first term on the LHS determines the 

amplitude loss rate of the photon field inside 

the cavity. The term on the RHS is the 

effective amplitude decay rate due to the 

cavity losses (see eq.12). Therefore, if Φin is 

constant, eq. (48) constitutes what in classical 

system is known as impedance matching 

condition (Siegmann et al., 1986). There is 

need for modification of classical impedance 

matching conditions when the input field is 

time dependent, as the circulating field 

experiences a slightly changed input field after 

one cavity-round trip, which leads to the 

second term on the LHS of eq. (48). A 

solution of eq. (48) is given by: 

 
 

 
0

2

1
cos in

t

in
t

t
t

t dt




 
       Eq, (49) 

In general, for any input field in  the 

mixing angle resulting from eq. (48) 

gives rise to the Rabi frequency of 

classical driving by noting that 

   cott g N t   leading to: 

 

 
 

   
0

2 2

in

t

in in
t

t
t g N

t dt t


 

  
  

 Eq, (50) 

Therefore, since the adiabatic photon transfer 

occurs under the condition of dynamical 

impedance matching the dark state 

corresponding to this condition simplifies to 

the following relation by substituting eq. (49) 

into (44) as: 

 

 

 
 

 
0

0

2

2

1 t

in
t t

in
t

c
D t d

L
t dt

  

 



 

                                                           Eq, (51) 

From the above relation of the dark state, one 

finds that the transfer of free-field photons 

into the dark state is proportional to the 

coupling of outside modes of the single mode 

cavity and the dark state is inversely 

proportional to the square root in accordance 

with c k
L 
 . 

 

Single Input Pulse 

The remarkable performance of the adiabatic 

transfer mechanism under conditions of 

quantum impedance matching can simply be 

demonstrated in this sub heading. Since 

eq.(48) relies explicitly on the shape, consider 

a normalized hyperbolic secant input pulse 

which is a single soliton pulse carrying 

single-photon quantum states given by: 

   
2

0, secin in

L t
z t t h

cT T

 
     

 
 

 Eq, (52) 

Where the amplitude terms c, L, T are the 

speed of light, the quantization length and the 

characteristic time respectively. A plot of the 

input pulse is depicted in Fig.3. Optimizing 
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this choice of input pulse for storage, one 

finds  cos t  of the form: 

 

 

Figure 3. The input normalized 

hyperbolic secant pulse 

 

  
 

 

2

2

sec2
cos

1 tanh

t
T

t
T

h
t

T






. 

  Eq,(53) 

 

where t0 is such that the input amplitude 

is zero for all t < t0 (t0 → −∞).  A plot of 

cos θ(t) shows that cos θ(t) → 0 as t → ∞ 

which leads to the optimization of the 

input pulse (see fig.5). This corresponds to 

varying the Rabi frequency, eq. (50) 

 

Figure 4: A plot of (  cos t  (orange) 

showing the time optimization of the 

input field  in t  (blue). 4T  . 

 

Leading to: 

 

 
 

   

2

22 2
2

sec

1 tanh sec

t
T

T t t
T T

h
t g N

h
 

   

.         Eq, (54) 

This choice of varying Ω(t) leads to the 

adiabatic transfer into the cavity dark state. 

For t0 such that the input amplitude is zero for 

all t < t0 and t0 → −∞, we obtain the dark state 

population to be of the form:  

 
 2

2 1 tanh

2

t
TD t


 .       Eq, (55) 

 

Thetransferofsingle-photonstatetothecavity-

darkstateisdescribedbythekink soliton. Fig.6 

shows the dark state population approaching 

unity as t → ∞.  
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Figure 5: Time evolution of the dark-state population 

In the fig. 5, it is observed that the curve of 

the dark state population tends close to unity 

implying that we obtain high probability of 

transference into dark state. The essential 

point of this technique is not for the purpose 

of storage of the energy or momentum carried 

by the photon but, rather the storage of the 

quantum state. 

 

Output: Retrieval of the input pulse 

Once the adiabatic storage into the cavity-

dark state, it is relevant to be able to retrieve 

the stored wave packet. In order to release the 

stored photon into the free- field photons at 

some later time t, one can simply reverse the 

adiabatic rotation of the mixing angle. 

For the retrieval process, consider a time t 

large enough such that  0, 0in t   for all 

1t t  and for  1cos 0t  , we find from eq. 

(45) the output as: 

     
1

2

10, cos exp cos
2

t
L

out c t
t D t d


    

 
    

 


       Eq. (56) 

This consist of adiabatically reversing the 

effect of  t , this simplifies the above 

retrieved output field according to: 

 

 
 

 
 

1

0

0

2

2

t
in

out int t

in
t

t
t d

t dt
 


   

 



 

    Eq. (57) 

The output for the choice of eq. (3.52) is 

given by: 

 

 
 
 1

sec 2 /
1 tanh 2 /

1 tanh 2 /
out

h t TL
t T

cT t T
      

.      Eq. (58) 

From eq. (57) and eq. (58), one can verify that 

the general expression for the output field in 

terms of the inject input field is expressed as: 

   

    
 
 

2

1

out

D t
t t

D t
   .  

      Eq. (59) 
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Therefore, for a particular time of retrieval of 

 in t , one requires 
1t t . A plot for the 

output is shown in fig. 3. 

 

Figure 6: A plot of 
out  (blue): Retrieval of 

stored pulse by time reversal of  cos t  at 

40t T  (orange). 

 

CONCLUSION 

Having in mind the method presented in this 

paper, it was observed that the probe pulse 

(that is, of single-photon quantum states) can 

be stored in long live cavity dark state. The 

transfer of the single photon state to the 

collective cavity dark state can be 

accomplished with nearly a hundred percent 

efficiently by the method of intracavity EIT 

and assumption of quantum impedance 

matching condition whereby the classical 

driving field is adiabatically switched off 

while the probe laser is inside the dense 

ensemble of atoms and cos θ is optimized for 

any input pulse respectively. The retrieval 

was made possible by a reverse adiabatic 

process of switching on the control laser. It 

was concluded that, this method of using an 

optically-dense many-atom medium is far 

superior and efficient than the technique with 

single atoms processed in the strong coupling 

system. 
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