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ABSTRACT

Scalability plays a key role in determining the potential worthiness of a parallel system . It can be
used to determine the performance of a parallel system on a large volume of data given a certain
number of processors from known performance on fewer processors. Scalability is a measure of
the ability of a parallel system (algorithm + architecture) to decrease the computation time in
proportion to the number of available processors. The upper bound of scalability is the minimum
number of processors for which the speedup takes the minimum value. Common parallel
algorithm evaluation metric like Amdahl’s law and Gustafson –Barsis’s have the draw back that
they do not take into account the parallel overhead and therefore overestimate the speedup. This
makes them unsuitable for investigating scalability. The main characteristics of scalability are
speedup and efficiency. The objective of this paper is to evaluate the scalability of One-Level
Recursion parallel Strassen’s algorithm on multicore processors (Intel Dual core and AMD
Quad-core). This algorithm is a variant of the Strassen’s algorithm where recursion stops at level
one. Thus, as a new algorithm, there is need to determine its scalability. This is done by
experimentally determining the fraction of sequential code of a parallel algorithm and the
parallel overhead using Karp-Flatt metric (to determine whether they are responsible for or
against speedup). The results obtained showed that both parallel overhead and fraction of
sequential code have negligible impact on the performance of the One-Level Recursion Strassen
algorithm. Furthermore, a super linear speedup was observed on the quad-core processor. This
will help in prediction and decision making of parallel system combination for cost effective and
efficient performance.
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INTRODUCTION

The wide application of matrix
multiplication and its inherently
embarrassingly parallelizable nature attracts
the attention of many researchers. Different
matrix multiplication algorithms with
different asymptotic complexities, for
example, Stassen’s, Winograd, and Copper
smith have been developed. Research is still
active in trying to develop techniques to
reduce the time and space complexity of the

available matrix multiplication algorithms
(Gu et al., 2020). Availability of affordable
and ever increasing number of parallel
computing systems has attracted a lot of
interest in to parallelize and hence reduce
the execution time of matrix multiplication
algorithm (Sarmah, et al., 2019). A scalable
system shows a steady increase in speedup
in such a rate that the efficiency is
maintained as the number of processors
increases (Hwang, 2001; Perlin et al., 2016).
But the parallel overhead increases inversely
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proportional to efficiency as the number of
processors increases.. Increasing the
problem size is a way to maintain efficiency
(Spiliotis et al, 2020). According to Kalinov
(2006) a parallel system is a combination of
parallel algorithms and parallel architectures
However; parallel systems come with some
overhead cost and bottlenecks. Parallel
overheads include communication cost,
redundant computation, imbalanced
workload, and architecture overhead. Thus
there is need to check the effectiveness of a
parallel algorithm by investigating its
scalability as more processors and data are
added to the system (Fan, et al., 2020).

According to Amdahl’s law, there is an
upper bound to the speedup obtainable by
increasing number of processors (Wilkinson
and Allen, 2005). Amdahl’s law and
Gustafson –Barsis’s are also use to evaluate
the performance of a parallel system. These
metrics have the draw back that makes them
unsuitable for investigating scalability. The
drawback is that they do not take into
account the parallel overhead and therefore
overestimate the speedup. Other metrics for
determination of scalability of parallel
systems are available. Common metrics for
testing scalability are Karp-Flatt and
Isoefficiency metric. The Karp-Flatt metric
decides whether the principal barrier to
speedup is due to sequential code or parallel
overhead (Harwell and Gini, 2019).
Isoefficiency determines the degree of
scalability of a parallel system by deciding
the rate at which input and number of
processors should be increased to maintain a
constant efficiency (Spiliotis et al, 2020).
We chose to use Karp-Flatt metric because it
can be experimentally used to determine the
principal barrier to scalability from the
values of speedup. But isoefficiency has the
drawback of not having a generic method of

computation (Prasad et al., 2018; Shudler et
al. 2017).

Speedup is defined as the ratio of serial
execution time to a parallel execution time
(El-Nashr, 2011). It expresses how many
times a parallel program works faster than
its serial counterpart used to solve the same
problem. Speedup is mainly affected by
parameters such as programming paradigm,
parallel overhead, and hardware architecture.

Speedup S is mathematically defined in Eq.
1;
S =

𝑡𝑠

𝑡𝑝
……………………………..… (1)

Where ts is the serial execution time and tp
is the parallel execution time.

Efficiency is the measure of the fraction of
time for which a processing element is
effectively and usefully employed.

Efficiency E is defined mathematically in Eq.
2;

E =
𝑆

𝑝
……………………………….(2)

Where, S is the speedup and p is the number
of processors.

Efficiency of a sequential or parallel matrix
multiplication strongly depends on the
hardware architecture.

In this research work, we try to
experimentally determine the scalability of
our new algorithm (one-step recursion
parallel Strassen’s algorithm) on multicore
processors. The algorithm was presented in
a seminar paper (Kawu, et al, 2017). The
algorithm was run on a dual core processor
to determine its speedup on the multicore
processors. However, in this work, we
investigated how increasing number of
processors and input data affects speedup
(scalability). The number of processors is
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increased from two to four. The parallel
programs were run on these processors. The
speedup obtained by running the parallel
program on Dual and Quad core processors
was used to investigate the scalability of the
parallel algorithm on the multicore
processors. That is running the algorithm on
a higher number of processors to see
whether increasing the number of processors
has effect on the performance of the
algorithm. Portion of a parallel program that
must be run on a single processor while all
other processors remain idle is called the
sequential portion of the parallel program.
Additional burden due to parallel execution
of a program such as communication cost
and synchronization are called parallel
overhead. These factors may inhibit the
performance of a parallel program. The
recorded speedup was used to determine the
sequential portion of the program that may
inhibit linear speedup as more processors are
added. We also use the speedup to calculate
the parallel overhead of the parallel program.

The performance of a given parallel
algorithm for a specific problem on a given
number of processors is not sufficient to
provide answers to several question such as
how can the program perform on a different
architecture? How does changing processor
speed and communication speed affect the
performance of the parallel system? In our
previous work Kawu et al (2017), we
investigated the speedup of our algorithm on
a dual core processor. In our recent work
kawu et al (2020), we investigated the effect
of adding more memory on the performance
of the algorithm on a dual core processor.
But in this paper we investigated the
scalability of our algorithm when more
processor is added. We reference some work
done to evaluate the scalability of several
algorithms below.

Arrigoni and Massini (2019) proposed a new
cache oblivious algorithm for the AtA
multiplication. The algorithm is a variant of
Strassen algorithm. They implemented the
algorithm using MPI paradigm on a Galileo
cluster and tested the performance of the
system on a subset of the cluster nodes.
Their result showed a good scalability and
speedup. They further observed that
sequential portion of the algorithm and
parallel overhead have negligible impact on
the performance of the algorithm. Iqbal et al
(2020) used the Karp-Flat metric to
determine the sequential portion of parallel
algorithm they run a cluster of four
computers using Hadoop and Stark services.
This was to allow them compare the
scalability of the algorithm on the two
parallel architectures. Furthermore, Spiliotis
et al., (2020) use the Karp-Flatt metric to
determine the serial fraction of their parallel
algorithm in order to measure the parallel
overhead of the algorithm.

Peng et al. (2008) compares the
performance of Intel Core 2 Duo, an Intel
Pentium D and AMD Athlon 64 x 2
processor using multi-program and
multithreaded workloads. Their result
showed better scalability for processors with
fast cache-to-cache communication, large
L2 cache, fast L2 to core latency and fair
cache resource sharing. The major challenge
of the system is the sharing of the L2 cache
by more than one core when they have
different demands from cache memory. In a
separate work, Artemov et al. (2019)
compared the scalability and efficiency of
three parallel algorithms RINCH, LIF and
IRSI for parallel inverse factorization of
block-sparse Hermitian positive definite
matrices. They reported that LIF is the most
efficient and scalable algorithm. Hϋfinger
and Haunchmid (2017) proposed a simple
procedure for estimating parallel overhead
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of a program based on run-time records.
Misra et al. (2018) investigated the
scalability of Stark (a distributed matrix
multiplication of large and distributed
matrices using Spark framework). They
generated three test cases, each containing a
different set of two matrices of dimensions
equal to (4096 x 4096), (8192 x 8192) and
(16384 x 16384). They experimentally
showed that Stark has a strong scalability
with increasing matrix size where they
multiplied two 16384 x 16384 matrices.

Sokolinsky (2017) presented a new high-
level parallel computational model named
BSF- Bulk Synchronous Farm; the model
was intended to determine the scalability of
a multiprocessor system with distributed
memory. Chen et al., (2020) investigated the
scalability of machine learning algorithms.
They chose four kinds of parallel machine
learning algorithms: (1) Asynchronous
parallel SGD algorithm (2) Parallel mode
average SGD algorithm (3) Decentralization
optimization algorithm (4) Dual coordinate
optimization algorithm. Their result showed
that character learning dataset decides the
scalability of the machine learning
algorithms.

Stefanes, Rubert and Soares (2020)
demonstrated the scalability of coarse
grained parallel algorithms for the maximum
matching problem in a convex bipartite
graph. Marowka (2020) examined the
practical performance Cormen’s Quicksort
parallel algorithm with different
programming approaches. The author
compared the capacity for theoretical
prediction of an algorithm’s performance
with predictions based on combination of
theoretical and practical analyses. Kathavate
and Srinate (2014) analyzed the efficiency
of a parallel matrix multiplication program
on a multicore system. Their result showed

that maximum speedup obtained is less than
number of processors.

The general assumption that engaging more
number of processors in parallel program to
solve a problem will continue to increase the
speed of execution need to be investigated.
Scalability analysis can be used to choose
the best algorithm-architecture combination
for a problem under different constraints on
the growth of the problem size and the
number of processors. It can also be used to
predict performance of a parallel algorithm
and parallel architectures for a large number
of processors from a known performance
from fewer processors (Kumar and
Gupta,1994; Spilitios, et al.,2020 ). The
objective of this paper is to evaluate the
scalability of One-Level Recursion parallel
Strassen’s algorithm on multicore processors.
This will help in prediction and decision
making of parallel system combination for
cost effective and efficient performance. The
remaining of the paper is organized as
follows: Section 2 gives a brief explanation
of method and materials used for the
implementation of the sequential and
parallel programs. Section 3 presents the
results of running the programs on Intel
Dual Core and AMD quad-core processors
and the calculated parallel overhead, fraction
of sequential code and efficiency. The final
part, which is Section 4 and 5 highlight the
implication of the result, drawback and
motivation for further research.

MATERIALS AND METHODS

A C++ programs for the implementation of
sequential and parallel Strassen’s matrix
multiplication algorithms were run on Dual
and Quad core processors. The execution
time for different matrix sizes (100, 200,
500, 1000, and 2000) were recorded. The
sequential program was optimized with
OpenMP library routines. The optimized
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program was also run on the Dual and Quad
core processors and execution time recorded.

The system specifications of the two
multicore processors are given in Table 1.

Table 1: Hardware and Software Specifications.

Processor Intel T4500 Dual
Core

AMDa A6-3240M
Quad-core

CPU speed 2.30GHz 1500Mhz
RAM 2GB/4GB 4GB
Operating System Windows 7 Windows 7
Software Visual Studio 2010 Visual Studio 2010

Input Design

For the input matrices A and B of size n x n,
the elements were generated automatically
within the program since it is very
cumbersome to enter using keyboard, a
matrix of size 100 not to talk of 1000, 2000
and so on. The user may only be required to
enter the dimension of the two matrices
since the same program would be run for all
dimensions of the matrices.

Output Design

The output matrix C will neither be
displayed nor written to a text file. It is only
the execution time that is recorded. A block
of code that display the result was provided
(in console application only) to check if the
matrix multiplication algorithms are giving
the correct result.

Execution Time

Calculation of execution time for both the
serial and the parallel programs will
commence after creation of the matrices.
And stops immediately after the
multiplication is completed and all allocated
spaces on the heap are released.

Parallel Program Design

As stated in section 2.1, the input matrices
would be created by a single processor.
Depending on the number of available cores
a number of threads will be spawned and the

matrices would be initialized and partitioned
among the cores. Each core will multiply the
portion allocated to it. The parallel program
was written in Visual Studio 2010 (C++)
using the OpenMP library routines. The
choice of the programming language is
based on the hardware available for testing
the program; that is the available hardware
is Multi-core processors and OpenMP is
suitable for programming Shared memory
multiprocessors.

Partitioning
Partitioning is the breaking down of the
problem into discrete “chunks” of work that
can be distributed to multiple processors. In
this research work, the matrices A and B are
partitioned into 4 for the Strassen’s
algorithm. If a matrix is a power of 2 its
dimension is maintained while if it is not a
power of 2 it is extended to the next power
of 2, for example a dimension of 100 will be
extended to 128, 900 to 1024, and so on the
new elements are filled with zeros. That is
static padding was employed.

Parallel Implementation

To implement parallelism, the sequential
programs were modified by adding loop
level parallel construct (for example,
#pragma omp parallel for) to the program.
Each loop would be parallelized. Depending
on the number of available processors,
threads would be specified using
omp_set_num_threads () library routine.
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The two input matrices A and B were
generated automatically inside the program
using the Ran() function of C++. The
generated random numbers were multiplied
by 1000 and converted to integer. Memory
space was allocated to the matrices A, B, the
product matrix C and all the intermediate
matrices of the Strassen’s algorithm on the
heap using the new operator. Calculation of
the execution time starts immediately after
the creation of matrices and stops when all
processors finish their work and all allocated
spaces are released. Each program was run
three times and average execution time
calculated.

Scalability

To determine the scalability of the
Strassen’s algorithm, we are going to
calculate the fraction of the sequential
portion of the parallel program and also
calculate the parallel overhead of the
program. This will enable us see whether the
sequential portion is growing with
increasing number of data input and number
of processors or reducing. In addition, we
will also see how the parallel overhead
increase with increase in the number of
processors.
We shall also consider efficiency metric to
determine how increasing number of
processing elements affects efficiency.
To determine the serial fraction of program
using speedup, let use the following
notations:
S is speedup, e serial fraction, ts serial
execution time, tp parallel execution time.
Parallel execution time tp is

𝑡𝑝 =
𝑡𝑠(1−𝑒)

𝑝
…………………...(3)

𝑆 =
𝑡𝑠

𝑡𝑠𝑒+
𝑡𝑠(1−𝑒)

𝑝

………………....(4)

𝑆 =
1

𝑒+
1−𝑒

𝑝

……………………...(5)

1

𝑆
= 𝑒 +

1−𝑒

𝑝
……………………(6)

𝑒 =

1

𝑠
−
1

𝑝

1−
1

𝑝

…………………….…..(7)

The parallel overhead is the extra time spent
in executing a parallel program by a number
of processors.

Let to be parallel overhead,
𝑝𝑡𝑝 = 𝑡𝑠 + 𝑡𝑜………………. (8)
𝑡𝑜 = 𝑝𝑡𝑝 − 𝑡𝑠………………..(9)

RESULTS

The section presents the result of running
the sequential and parallel Strassen’s
programs on Dual and Quad core processors.
The main focus of the research is to
determine the scalability of One-Level
Recursion Strassen’s algorithm. The
speedup obtained on Dual core increases
linearly up to a matrix size of 1000 where
the speedup reduced drastically and then
increased at 2000. However, on Quad core
processor the speedup increases at 1000.
This may be due to sufficient cache memory
(Table 2). The efficiency of the parallel
programs increases with increasing size of
input matrices. For matrices size from 500
and more, efficiency above 100% was
recorded except for a matrix size of 1000
where the efficiency falls below 100%
(Table 3) on the dual core processor.
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Table 2: Comparison of Speedup between Sequential and Parallel Strassen’s on Dual versus
Quad-core

Mat. size Exec.Time
seq.(s)

Exec.Time
duo(s)

Exec.Time
quad(s)

Speedup
duo

Speed-up
quad

100 0.06 0.04 0.03 1.5 2
200 0.33 0.2 0.12 1.65 2.75
500 3.27 1.16 0.63 2.82 5.19

1000 41.42 23.79 5.36 1.75 7.73
2000 193.73 72.77 41.56 2.66 4.66

Table 3: Efficiency (%) of parallel Strassen’s on Duo and Quad Cores.
Mat.
Size

Speed-
up duo

Speed-
up quad

Efficiency
duo

Efficiency
quad

100 1.5 2 75 50
200 1.65 2.75 82.5 68.75
500 2.82 5.19 141 129.75
1000 1.74 7.73 87 193.25
2000 2.66 4.66 133 116.5

The serial fraction of the parallel One-Level
Recursion program calculated from equation
3 to 7 is presented in Table 4.

Table 4: Fraction of sequential portion of
the parallel program

Matrix size Dual Core Quad Core
100 0.34 0.33
200 0.22 0.15
500 -0.3 -0.08
1000 0.14 -0.16
2000 -0.26 -0.05

The parallel overhead of running the
algorithm on Dual and Quad core processors
calculated from equation 8 and 9 shows a
negligible overhead on both processors for
matrix size above 200 (Table 5).

Table 5: Parallel Overhead
Matrix size Dual Core Quad Core
100 0.02 0.06
200 0.11 0.15
500 -0.13 -0.75
1000 -6.17 -37.45
2000 -6.18 -27.49

DISCUSSION

This paper focuses on evaluation of the
scalability of One-Level recursion parallel
Strassen algorithm on multicore processors.

C++ programs were developed for
sequential and parallel algorithms. The
parallel programs were optimized with
OpenMP library routines. The programs
were run on dual and quad core
multiprocessors. The overall result obtained
showed a significant scalability for medium
and large matrix sizes. The effect of
sequential fraction of code is significant in
small matrix sizes but negligible in larger
matrices.

For smaller matrices, the sequential
execution time is very large. However for
larger matrices (1000 x 1000) the sequential
portion is negative (Table 2) because matrix
multiplication is embarrassingly parallel.
This result agrees with the findings of
Thakur and Kumar (2016).. Besides large
shared L2 cache also improves performance
of a multi- core processor (Peng et al., 2008).
The sequential portion reduces between
matrix size 100 to 500 (Table 2). Both the
parallel overhead (Table 3) and the
sequential portion reduces with increasing
matrix size. From matrix size 500 they
become negligible. The negative sequential
portion and parallel overhead in tables 4 and
5 shows that they are negligible. The
negative values of both sequential portion of
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code and parallel overhead signifies a super
linear speedup where speedup is higher than
number of processors. This result is in
agreement with the work of Arrigoni and
Massini (2019).

CONCLUSION

The results presented and discussed above
indicate that one-Level Recursion parallel
Strassen’s algorithm is scalable and has
negligible sequential portion and parallel
overhead as matrix size and number of
processors increases. This result can be used
in selection of hardware and algorithm
combination for solving a particular parallel
program. An important drawback of this
research is that even though the scalability
of the parallel algorithm supposed to be
tested on a large number of processors like 5,
6, 7, 8, and so on. we believed that doing
this on a dual and quad core will give an
insight into the scalability of multicore
processors and motivates further research. In
addition, there is need for further research to
determine the real cause for the drastic fall
in execution time for a matrix size of 1000
on the dual core processor.
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