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ABSTRACT

The study presents the stretching behavior exhibits by the viscoelastic fluid with the scope of
investigating how the stretching flow method can be predicted from simple mathematical models
of polymeric fluids. However, the stretching flow technique is used to determine the extensional
properties of polymer liquids. Our results show that the stretching behavior of the polymeric
fluid causes a decline in radius. Moreover, we observed that the exponential decay curve plays a
significant contribution in determining the relaxation times. This was deduced from the
governing equations of the radially squeezed cylindrical fluid column with the use of distinct
non-dimensional parameters obtained from the force balance and three relaxation times were
achieved. The curve appears to be Newtonian at the initial stage and then changed to elastic and
cut-off in the final stage. The motive for this study is to provide a significant understanding of
fluid flow phenomenon of polymeric liquid by stretching techniques and computations. This
flow phenomenon was investigated with the view of understanding the rheological viewpoint
governing the stretching behavior in elastic fluids and the techniques employed in determining
these flow responses to deformation.
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INTRODUCTION

Polymeric fluids are characterized as non-
Newtonian fluids which simply mean the
fluids that possess dissimilar behavior in
their flow properties from Newtonian fluids
(Szabo et-al,. 2012). Examples of these
fluids are toothpaste, ketchup, corn starch
mixtures and others. Some of these
substances are viscoelastic, that is, they
possess both viscosity (a property of fluid)
and elasticity (a property of solid). The rate
at which a strain is applied on viscoelastic
materials describes the behavior of the
material's response to deformation (Clasen
et al., 2004). If the strain is applied slowly,
the behavior at the after-effect will be fluid-
like. In contrast, if the strain is applied

quickly then the material shows solid-like
behavior. Also non-Newtonian fluids are
described with mechanical properties of
polymer which has to do with extensional
properties.

In this paper, we investigate and analyze the
extensional flow using capillary rheometer
with the aim of determining the extensional
properties of polymeric fluids, exploring the
rheological frame of reference governing the
extensional behavior in polymeric fluids.
Furthermore we analyze the techniques in
determining the flow responses to
deformation using the mechanical properties
of polymeric fluids from the simple
mathematical models, where a cylindrical
column of elastic fluid undergoes
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extensional distortion by a surface tension
(Entov et-al,.1997) with the view of
analyzing the consequence of relaxation
time in stretching position and scale between
the viscous stage up to elastic stage period
of the deformation. Also the break-up time
in the elastic fluid that has been influenced
by elastic stress at the elastic stage.

Related Literature

The stretching of such liquids produces a
very long filaments or threads of fluids; this
happens as a result of strong extensional
resistance exhibit by their flow properties.
Extensional flow has a very significant value
in polymer processing industries, giving a
greater understanding of the integral
extensional behavior of polymer mixtures
especially in polymer processing plant. The
flow deals with the stretching and
deformation of polymer melts and solutions
with no shear (Morrison, 2001). These
liquids are known as non-Newtonian, simply
means that they possess dissimilar behavior
in flow properties from Newtonian liquids
(Szabo et-al., 2012). Often polymer
materials behaves differently depending on
the type of flow is applied, quite commonly
their shear thinning and extensional
hardening.

The stretching of those materials produces
very long filaments of fluid. This happens as
a result of strong extensional resistance
exhibits by their flow characteristics. These
flows are rather a complex fluid flows, in
the sense that the flow properties are very
difficult to determine due to many
unresolved defects exhibited by the flow
fields. These occur due to some physical
structures such as temperature differences,
molecular structure and concentrations in
those solutions and melts. External forces
such as gravity, boundary conditions and

surface tension also influences the flux
reliability (Young et-al., 2011).

In spite of these complexities, many
investigations were carried out to determine
the extensional flow properties through the
means of devices such as the filament
stretching rheometers and many others.
According to (Morrison, 2001) the apparatus
used to perform the laboratory testing and
experiments in order to determine the
rheological phenomena are the Sridhar's
Apparatus, the Load cell and the Meissner
rheometer. The Sridhar's Apparatus is use
for determining the extensional resistance to
flow of polymer mixtures by means of
stretching. This device is made up of two
circular plates where a little amount of
polymeric liquid specimen is situated
between the plates and later the plates were
moved apart in regular manner with the aim
of determining the fluid thread distortion
rate together with the load cell attached at
the end of the motionless plate to compute
the force in the fluid thread. Other devices
attached to this experiment are Charged
Coupled Device (CCD) camera, computer
motion controller, servo motor, to monitor
the proceedings (Szabo et-al,. 2012). This
experiment was carried out in order to
provide adequate and acceptable solutions to
those complexities encountered in the
process of deformation in the fluid.

GOVERNING EQUATIONS

A polymeric liquid of cylindrical form is
squeezed radially with a powerful surface
tension effect, where extra stress is applied
in the z direction in order to stretch liquid
sample in that the extension rate is no longer
predetermined, but must be found as part of
the solution. This process is shown in Figure
1.
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For the stretching in the axial direction with
extension rate  tE , the decline in radius

 ta at the interval  tar 0 give

a
E

dt

da

2


 . (1)

The solution of Eq. (1) yields,
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The uncoupled finitely extensible nonlinear
elastic (FENE) dumbbell model needed for
the stretching flow with the radial
deformation  tArr and the axial

deformation  tAzz are set as

 1 rrrr
rr A
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Where τ is called the relaxation time and
f is the FENE factors define by

rrzz AAL

L
f

232
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 (4)

2L is the finite extension. In Figure 1, at free
surface, the exerted capillary force is
identical with the stress in radial rr , so that

a
GfAEp rrrr

 
 .

The right-hand side is the stress due to
surface tension. The axial stress is assumed
to be zero as

02  zzzz GfAEp  .

Figure 1: An illustration of a stretched
polymeric fluid column in cylindrical form.
By removing p (pressure term) and
subtracting the radial from the axial terms
yields,

 
a

AAGfE rrzz

 3 (5)

The viscous stress E3 and the elastic stress

 rrzz AAf  give balance to the surface
tension on the right-hand side. We need to
find the strain rate  tE as part of the
solution from the force balance in Eq. (5) so
that
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a
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.

For easier parameterization we multiply
both sides by  which gives

 rrzz AAf
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Defining two non-dimensional

parameters
oa

B



 the ratio of surface

tension,

G

C  the ratio of polymer
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viscosity and solvent viscosity and
choosing ED  therefore

 
3

1
0 rrzz AACfBa

D





(6)

The Eq. (6) will be used in determining the
numerical solution of the deformation and
gradual developing of the fluid column. To
find the decline in radius  ta from Eq. (5) in
the absence of stress in viscous fluid term
and the radial deformation, the equation
reduces to

a
GAzz


 .

This represents the balance between the
axial stress and the surface tension. So that

  





 











 3
exp

3

1

0
0

tGa
ata . (7)

For the surface tension being substantial, we
see that the form of a solution for the axial
deformation decreases exponentially in time.
At the early viscous stage which is the initial
stage, the elastic stage is considered to be
negligible, so therefore the analytical
solution of the axial deformation, the radial
deformation and the decline in radius are
examine. The Eq. (5) reduces to the form

a
E

 3 .

We need to find the decline in radius of the
fluid column by substituting for the
extension rate in Eq. (1) and integrate the
expression to yield

  tata


60  . (8)

At the elastic stage, the stresses in the fluid
increases towards the viscous stage ending,
making the elastic stress start to be
significant. Therefore the axial deformation
is considered to be large as a result of the
surface tension effect acting in order to
stretch the fluid column. From Eq. (4) at
equilibrium, the FENE factors 1f . This

transform the uncouple dumbbell equation
to be in the form of the linear dumbbell
model so that the axial deformation in Eq. (3)
becomes

 11
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Taking 1zzA (large), the initial condition

at 0t , 0aa  gives
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This shows the exponential decay with time
for the axial deformation. The same
procedure applies to the radial deformation
in Eq. (2) with the same boundary
conditions to give
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We can however, examine the fluid response
to deformation by putting Eq. (7) into the Eq.
(9) to see the behavior of the axial
deformation. This shows that
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This implies that the axial deformation
increase exponentially with the decline in
radius. Now looking for the strain-rate, this
can be calculated by substituting the
prediction of the decline in radius in Eq. (7)
with the initial decline in radius in Eq. (1).
Hence

3
2

E .

At the fully extended flow regime, after the
elastic stress has been accumulated, the flow
tend to become a steady extensional flow,
thereby, the material derivative of the axial
deformation in Eq. (3) turn out to be
insignificant. This become

 12  zzzz A
f

EA


.
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For 1zzA , we need to set
2

1
E

and 12 L , this gives zzzz fAAE 2 . Using
these set of conditions Eq. (4) becomes

zzAL
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2

2

2  .

Therefore the prediction of axial
deformation in the steady extensional flow
gives.
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1
12 (11)

RESULTS

The result shows stretching behaviour of the
polymeric fluid at a predefined manner, in
order to measure the transitional behaviour
on the axial deformation, the radial
deformation of the stretched fluid sample
taking into account the surface tension
acting on the fluid. Figure 2 indicates the
behavior of the decline in radius after the
stretching effect. Choosing the non-
dimensional parameters 5B and 1C ,
with FENE factors 1f in D . The solid
line shows the exponential decay with time
for Eq. (1), the dashed line represents Eq.
(8), which shows linear decrease with time.
For a fixed value of the parameter B , the
linear dashed line remain unchanged for
lower and higher values of C . Unlike the
solid line, which keep decreasing
exponentially with time at faster rate as the
value of C increase. Close to the unity at
some time interval, the region exhibit linear
decay. The fluid shows a kind of Newtonian
behaviour, afterwards eventually changes to
exponential decay with time. As the axial
deformation is increasing exponentially, so
also the decline in radius is decaying
exponentially showing the stretching effect.

Assuming the finite extension limits L is
large, that is 1L , choosing the FENE
factors 1f in D , with 5B ,

1C together with different ranges of
10L , 20 and 30 respectively, then figure

3 shows the exponential decay behavior with
different relaxation times for the different
values of finite extension limits L . We can
see that the curves are behaving in the same
manner at earlier times for different values
of L for the exponential decay. At later
times, lower values of L decay much faster.
For higher values of L , the exponential
decay curves increases with time but having
slight differences in the time intervals
between the regimes. This implies that the
higher values of finite extension limits, the
slower decrease in the radius of the filament
with time.

The comparison between the FENE factors
shown in Figure 4, for decline in radius in
Eq. (1) indicates the exponential decay in
different phases. The solid curve represent a
case where 1f and the dashed curve is a
case for 1f . The behavior on the curves
looks the same at the initial stage. The solid
curve relaxes faster at the time scale over the
dashed curve, which later relaxes at a higher
time interval different from the solid curve.
For the FENE factor greater than unity,
choosing 10L , the stretching behavior of
the fluid column in solid line shows the
faster decay in time at shorter time interval
compared to the FENE factor equal to unity
represented in the dashed line, which slowly
decreases exponentially with time at a
higher time interval. In the plot, at the initial
part, both the two cases possesses similar
behavior on the exponential decay curve
with some regions on the curves behaving in
a linear decay manner, which appears much
greater in the case where the FENE factors

1f .
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Figure 2: The decline in radius   0/ ata with time, choosing the parameters 5B and 1C .

Figure 3: The decline in radius   0/ ata with time with different values of finite extension

slimits from left to right 10L , 20 and 30 .

Figure 4: Plot of the decline in radius   0/ ata with time. A comparison between the FENE

factors 1f and 1f with 10L , adopting the parameter 5B and 1C .

Stage 2

Stage 1

Stage 3
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DISCUSSION

Three stages of capillary thinning can be
seen in Figure 3. The first stage is
essentially the Newtonian where the axial
stress is smaller compared to the viscous
stress EGAzz  . The second stage is the
elastic or elasto-capillarity balance. This is
the other way round for the first stage where
the viscous stress is smaller compared to the
axial stress zzGAE  . But the FENE factors
and the axial deformation is bigger than
unity but less than the finite extension
limit 21 LAzz  . The final stage is the fully
extended viscous. In this case, we essentially
have the axial deformation is close to the
finite extension limits. Systematically, the
curve starts as a Newtonian then gradually
change to elastic stage and then finally cut-
off in the third stage. The third stage is sort
of viscous again, so there is a viscous time
scale with extensional viscosity.

CONCLUSION

The experimental approach in measuring the
extensional properties of polymeric fluids
were considered in understanding the
filament stretching phenomenon and
computations using set of well-defined fluid
governing equations. This is done to
estimate the analytical and numerical
solutions of constant flow and flow like
solutions for Newtonian and viscoelastic
fluids. The exponential decay curve plays a
significant contribution in determining the
relaxation times. This was deduced from the
governing equations of the radially squeezed
cylindrical fluid column with the use of
distinct non-dimensional parameters
obtained from the force balance and three
relaxation times were achieved. The curve
appears to be Newtonian at the initial stage,
and then changed to elastic and cut-off in the
final stage.
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