

232

Bima Journal of Science and Technology, Vol. 4(1) July 2020. ISSN: 2536-6041

EFFECT OF MEMORY ON THE PERFORMANCE OF ONE-STEP RECURSION
PARALLEL STRASSEN’S ALGORITHM ON DUAL CORE PROCESSOR

A. J. KAWU1*, A. U. YAHAYA2 AND SAMINU I. BALA.3

1,2Department of Computer Science, Gombe State University, Gombe, Nigeria
3Department of Mathematical Science, Bayero University, Kano, Nigeria

Corresponding Author: ahmadkawujibir@gmail.com

ABSTRACT

The main aim of this research work is to compare the speedup obtainable from executing One-
Level Recursion parallel Strassen’s matrix multiplication algorithm on a dual core with 2G and
4G memories relative to parallel conventional algorithm. This is to determine the effect of
additional memory on the performance of the algorithm. The speedup obtainable by Strassen’s
Algorithm is at the expense of additional memory space for intermediate matrices. Even though
additional memory improve performance, there is need to experimentally investigate how
additional memory influence the performance of the new algorithm. The execution time of
parallel implementations of the algorithms on dual core processor with 2G and 4G memories
were measured, analyzed and interpreted. The programs were written in C++/OpenMP. The
result of the research work showed a minor improvement in performance of the parallel One-
Level Recursion Strassen’s algorithm for large matrix size on the 4G memory. It was also
observed that conventional algorithm did not show any significant performance improvement
with increased memory. The result suggested that with large amount of memory One-Level
Recursion, Strassen’s algorithm performs a little better for larger matrices. The result will serve
as a motivation for further research to determine the role played by cache memory in
performance of the new algorithm.

Keywords: Strassen’s, OpenMP, Speedup, One-Level Recursion.

INTRODUCTION

Matrix multiplication has wide application
in linear algebra and it is one of the most
studied problems in high performance
computing. Matrix multiplication has
numerous applications in engineering,
image processing, computer graphics
(Aliyu et al., 2019), graph algorithms,
combinatorial optimization, machine
learning, digital control (Singh, Chander
and Bhatt 2019), Sonar systems, Relational
Database Management Systems (Rathore
and Kumar, 2014).

Thottethodi et al. (1998) stated that
Strassen’s algorithm gained its lower
arithmetic complexity at the expense of
locality of reference which makes it
difficult to implement on modern machines
with hierarchical memory. This is mainly
caused by the intermediate matrices created
by a deep level of recursion of the Strassen
algorithm. They suggested early truncation
of the recursion to reduce the amount of
temporary storage requirement. Tang
(2019) also stated that there is need to
balance space-time requirement for an
algorithm to achieve higher performance on

233

Bima Journal of Science and Technology, Vol. 4(1) July 2020. ISSN: 2536-6041

modern shared memory multicore
architectures. Strassen algorithm has the
expense of memory allocation due to
recursive overhead for creating additional
storage of the required sub matrices (Zin
Oo, and Chaikan, 2019).

Conventional Matrix Multiplication

Multiplying two square matrices of size n x
n using the Naïve (conventional) matrix
multiplication cost n3 multiplications as
shown in equation (1).

If ,[]i jA a is an m x n matrix and

,[]j kB b is an n x p matrix, then the

matrix product C=AB is the m x p matrix

,[]i kC c defined by

 , , ,
1

1 ,1
n

i k i j j k
j

c a b i m k p

 . (1)

The definition of the matrix multiplication
operation is very simple, all of which
simplifies its understanding. Given a matrix

 ()m x rA of m rows and r columns,

where each element is denoted as ,i ja with

1 , 1 ;i m and j r and a matrix
()r x nB of r rows and n columns, where each

element is denoted as ,i jb with

1 1i r and j n ; matrix C resulting

from the multiplication operation of A and
B matrices C = A x B, is such that each of
its element is denoted as

, 1 , 1i jc with i m and j n and it

is computed as

 , , ,
1

r

i j i k k j
k

C a x b

 (2)

This multiplication has the asymptotic cost
of O (n3)
Developing ideas and algorithms to reduce
this cost has been one of the central
problems in algebraic complexity since the
1960s. Strassen’s discovery in 1969 of an
algorithm for multiplying 2 x 2 matrices
using 7 (instead of 8) multiplication was the
key event in the history of fast matrix
multiplication algorithms. According to
Ikenmeyer and Lysikov (2019), the
discovery of Strassen’s matrix
multiplication algorithm is a great
achievement in computational linear
algebra. Several variants of Strassen’s
algorithms such as Winograd’s,

Laderman’s, Hopcoft and Kerr’s were
developed to reduce the complexity cost of
the conventional matrix multiplication
method. According to Dammel et al. (2012)
matrix multiplication is a core kernel of
high-performance computing. It is an
inherently parallelizable task, and
algorithms which take advantage of parallel
architectures to achieve much higher
performance than serial implementations.
The fundamental role of matrix
multiplication is evidenced by its inclusion
in portable libraries such as level 3 Basic
Linear Algebra Subroutine (BLAS) which
can then be used as a building block in
building routines such as Linear Algebra

234

Bima Journal of Science and Technology, Vol. 4(1) July 2020. ISSN: 2536-6041

Package (LAPACK), Automatically Tuned
Linear Algebra Software (ATLAS), and so
on. . According to Gu et ‘al. (2020)
improving matrix multiplication is still an
active research area.
Recent developments in multi core
processors have led to renewed interest in
parallelization of matrix multiplication
algorithm (Rathore and Kumar (2014),
Kathavate and Srinath (2014), Dash, Kumar
and Patle (2015), Sharma and Munir (2015)
and Thakur and Kumar (2016).

Strassen’s Matrix Multiplication

Strassen’s algorithm is an improvement
over the conventional algorithm in the case
of multiplying 2 x 2 matrices, because it
uses only seven scalar multiplications as
opposed to the usual eight. This algorithm
has the asymptotic complexity of O (nlog

2
7)

The algorithm is defined using Divide and
Conquer as follows:

r s a b e f

x
t u c d g h

 (3)

 P1 + P4 – P5 + P7 P8 + P5
 = P2 + P4 P1 + P3 – P2 +P6 (4)

1 * ()

2 () *

3 () *

4 *()

5 ()()

6 ()()

7 ()()

p a f h

p a b h

p c d e

p d g e

p a d e h

p b d g h

p a c e f

 (5)

In terms of P1 through P7:

5 4 2 6

1 2

3 4

5 1 3 7

r p p p p

s p p

t p p

u p p p p

 (6)

The Strassen’s algorithm can thus be
written as:

1. Partition matrices A and B into sub
matrices; add and subtract to form
terms as shown in Equations (5) and
(6).

2. Perform 7 recursive multiplications.
3. Add and subtract terms to form C.

Speedup

According to El-Nashr (2011) speedup is
defined as the ratio of serial execution time
to a parallel execution time. It is used to
express how many times a parallel program
works faster than its serial version used to
solve the same problem. Many conflicting
parameters such as parallel overhead,

235

Bima Journal of Science and Technology, Vol. 4(1) July 2020. ISSN: 2536-6041

hardware architecture, programming
paradigm, programming style, memory
hierarchy may negatively affect the
execution time of a parallel program. This

would make its execution time larger than
that of the serial version and thus any
parallelization gain will be lost. Speedup
can be computed as

sin

()
sin

s

p

texecution time u g one processor
S p

execution time u g multiprocessor t
 (2)

Where ts is the execution time on a single
processor and tp is execution time on a
multiprocessor.

Related Work

Lee et ‘al. (2018) proposed to speed up
distributed machine learning by using
coded matrix multiplication to overcome
the problem of slow system due
communication bottle neck or system
failure.
Kumar et al. (1995) attempt to reduce the
amount of memory required by Strassen
algorithm from O(7n) to O(4n) for
multiplying 2n x 2n matrices. This reduction
was made possible through the reuse of
working storage.
Mathew and Kumar (2012) compared the
execution time complexity and space
complexity between Strassen’s and
conventional algorithms for matrix
multiplication where they found that the
Strassen’s algorithm is more efficient than
conventional algorithm on large sizes of
matrices. Their result also showed that the
Strassen’s algorithm needs more memory
allocation.
Saravanan et al. (2012) implemented the
Naïve and Strassen’s matrix multiplication
algorithms on a Dual core (using Visual
Studio 2005). Their result showed
optimizing the code using OpenMP
increased the performance of the parallel
algorithm over the sequential
implementation.

Karstadt and Schwartz (2017) in their
attempt to find a little faster matrix
multiplication algorithm based on
Strassen’s-like matrix multiplication
algorithm presented a theoretical analysis
for finding the optimal number of recursive
steps without tuning. Their result showed
that the new algorithm outperforms
Strassen’s-Winograd algorithm for matrix
size n>=32.
Kawu et al. (2017) proposed the One-Level
Recursion Strassen’s algorithm to reduce
the amount of temporary storage
requirement by stopping the recursion very
early.
Karstadt and Schwartz (2020) propose to
improve the leading coefficient of
Strassen’s and other fast matrix
multiplication algorithms by extending the
Bodrato’s intermediate representation
method for matrix squaring to an alternative
basis multiplication method.
In this research we focus on determining the
performance of One-Level Recursion
parallel Strassen’s algorithm on multi core
processor. The objective of the research is
to compare the speedup obtainable by
running parallel Strassen’s and parallel
conventional matrix multiplication
programs on Dual core processor with 2G
and 4G RAM (Random Access Memory).
The programs were written in
C++/OpenMp
The remaining part of the paper is
organized as follows: section 2 is the

236

Bima Journal of Science and Technology, Vol. 4(1) July 2020. ISSN: 2536-6041

methodology, section 3 presents the results
obtained, section 4 is discussion of the
result, section 5 is the conclusion, section 6
is the acknowledgement.

MATERIALS AND METHODS

C++ Programs optimized with OpenMp
library directives were developed to
implement the parallel conventional and
parallel One-Level Recursion Strassen’s
multiplication algorithms. The programs
were run on Intel T4500 Dual core
processor. The specifications of the system
and the required software are shown in
Table 1.

Table 1: Hardware and Software
requirements.

Processor Intel T4500 Dual Core
CPU speed 2.30GHz
RAM 2GB/4GB
Operating System Windows 7
Software Visual Studio 2010

Matrices of different sizes ranging from
100 x 100 to 2000 x 2000 were used in the
implementation of the programs. For the
input matrices A and B of size n x n, the
elements will be generated automatically
within the program where the user is only
required to enter the dimension of the two
matrices and the elements will be generated
randomly using the Ran() function of C++.
The generated elements were multiplied by
1000 and converted to integer. Since the
same program would be run for all
dimensions of the matrices. Static padding
(zeros would be added to make the matrix
dimension a power of 2 is use to handle odd
size matrices. For instance, if a matrix
dimension of 5 is entered by a user, zeros
are added to make the matrix 8 x 8) is used
for a matrix size that is not a power of 2.

The sequential programs for both
conventional and Strassen’s matrix
multiplication algorithms were written in
Visual Studio 2010.
In the Strassen program, the matrices A, B
and C are partitioned in to four sub matrices
each. The matrix C is calculated using the
algorithm shown in section 1.3.
The parallel programs were obtained by
adding OpenMP library routines. The
programs are parallelized by Loop level
parallelism using #pragma parallel for
directive.
Calculation of execution time for both the
parallel conventional and the parallel One-
Level Recursion programs will commence
after creation of the matrices and stop
immediately after the multiplication is
completed and all allocated spaces on the
heap were released.
Each program is run three times and the
average execution time is calculated.

RESULTS

This work focuses on investigating speedup
gain due to increasing memory size during
the execution of One-Level Recursion
parallel Strassen’s algorithm. The
Conventional and One-level recursion
programs were run on Intel Dual core with
2GB and 4GB memory. The result is
presented below.

Table 2: Execution Time (in seconds) of
Parallel Conventional Strassen’s

algorithms on 2GB memory.
Matrix size Conventional

Algorithm
Strassen’s
Algorithm

100 x 100 0.06 0.04
200 x 200 0.29 0.22
500 x 500 4.09 1.57
1000 x 1000 37.42 26.36
2000 x 2000 107.43 93.46

237

Bima Journal of Science and Technology, Vol. 4(1) July 2020. ISSN: 2536-6041

The execution time of the parallel
Strassen’s algorithm is better than the
conventional algorithm (Table 2). This is
due the inherently parallelizable nature of
the Strassen’s algorithm.
The execution time of the parallel
Strassen’s algorithm improves by about
20% for matrix size 500 and 2000.
However, a -0.8% improved was recorded
for matrix size 1000 (Table 3).

Table 3: Execution Time (in seconds) of
Parallel Conventional Strassen’s

algorithms on 4GB memory.
Matrix size Conventional

Algorithm
Strassen’s
Algorithm

100 x 100 0.07 0.04
200 x 200 0.31 0.20
500 x 500 4.40 1.16
1000 x 1000 33.20 26.44
2000 x 2000 111.38 74.54

The execution time of the parallel one-level
recursion Strassen’s algorithm reduces
significantly for matrix size above 500
(figure 1)

Figure 1: Comparison of the execution
time of parallel Strassen’s algorithm on
Dual Core with 2GB and 4GB RAM.

DISCUSSION

The overall result of the experiment carried
out to determine the effect of increasing
memory size on the performance of One-
Level Recursion parallel Strassen’s
algorithm was presented in section 3 above.
As seen in Tables 2 and 3, there is a
marginal reduction in the execution time of
parallel Strassen’s algorithm as compared
to the conventional program. The loss of
improvement observed for matrix size of
1000 may be due to saturation of the L2
cache of the processor. The L2 cache has a
size of 1MB and is shared by the two cores.
The overall result shows a minor
improvement in execution time when the
memory size is doubled. This may due the
difficulty of implementing Strassen’s
algorithm on computers with memory
hierarchy like the Intel dual core used in this
research work.

Acknowledgement

This research work is the extension of our
paper presented at NIGERCON IEEE
conference in 2017, in Owerri, Nigeria.

REFERENCES

Dash, Y., Kumar, S., &Patle V. K. (2015).
A Survey on Serial and Parallel
Optimization Techniques
Applicable for MatrixMultiplication
Algorithm.American Journal of
Computer Science and
Engineering Survey.Vol. 3(1).071-
077.

El-Nashar, A. I. (2011). To Parallelize or
not to Parallelize, speed up
issues.International Journal of
Distributed and Parallel Systems
Vol.2, No.2.

-20

0

20

40

60

80

100

0 2000 4000

Ex
ec

ut
io

n
Ti

m
e

Matrix Size

Parallel Strassen on 2GB and
4GB Dual Core

 2GB RAM

4GB RAM

238

Bima Journal of Science and Technology, Vol. 4(1) July 2020. ISSN: 2536-6041

Gu, Z., Moreira, J., Edelsohn, D. and Azad,
A. (2020).
arXiv2002.11302v1[cs.DC].

Huss-Lederman, S. Jacobson, E. M.,
Johnson, J. R., Tsoa, A. & Turnbull
T. (1996). Implementation of
Strassen’s Algorithm for Matrix
Multiplication.

Karstadt, E. & Schwartz, O. (2017). Matrix
Multiplication, a little faster. In
proceedings of SPAA’ 17,
Washington DC, USA, July 24 – 26,
2017.

Karstadt, E. & Schwartz, O. (2020). Matrix
Multiplication, a little faster.
Journal of ACM, Vol. 67. No.1.
article 1.

Kawu, A. J., Yahaya, A. U., & Bala, S. I.
(2017). Performance of One-Level
Recursion Parallel Strassen’s
Algorithm on Dual Core Processor.
IEEE NIGERCON 2017.

Kumar, B., Huang, C. H., Sadayyappan, P.,
and Johnson, R. W. (1995). A tensor
Product Formulation of
Strassen’s Matrix Multiplication
Algorithm with Memory Reduction.
 Scientific Programming
Vol. 4 pp 275 – 289.

Lee, K., Lam. M., Pedarsani, R.,
Papailiopoulus, D., and
Ramchoudran, K. (2018).
arXiv:1512.02673v3[cs.DC].

Mathew, J. and Kumar R. V. (2012).
Comparative Study of Strassen’s
Matrix Multiplication Algorithm.
International Journal of Computer
Science and Technology.Vol. 3(1).
Pp. 749- 754.

Rathore, Y. S., & Kumar, D. (2014).
Performance Evaluation of Matrix
Multiplication Using Mix Mode
Optimization Technique and

OpenMP for Multi-core Processors.
IOSR Journal of Engineering.Vol.
04 (3).

Saravan, V., Radhakrishna M., Basavesh,
A.S. and Kathori B. (2012). A
Comparative Study on Performance
Benefits of Multicore CPU Using
OpenMP. International Journal of
computer science issues, Vol. 9,
Issue 1, No. 2.

Sharma, R. &Munir, S. (2015). Time
Efficient Implementation of Matrix
Multiplication for Signal
Processing. International Journal of
Artificial Intelligence and
Mechatronics.Vol. 4(2).

Tang, Y. (2019). Improving Space-Time
Efficiency of Processor-Oblivious
Matrix Multiplication Algorithms.
arXiv:1911.05328v1[cs.DC].

Thabet, K. and Al-Ghuribi, S. (2012).
Matrix Multiplication
Algorithms.International Journal
of Computer Science and Network
Security, Vol. 12, No. 2.

Thottethodi, M., Chatterjee, S. & Lebeck,
A. R. (1998). Tuning Strassen’s
Matrix Multiplication for Memory
Efficiency.Unpublished.

Thakur, V. & Kumar S. (2016). An
Analytical Study on Effect of
Parallelism on Multi-core.
International Journal of Science
Engineering and Technology
Research. Vol. 4 (8) pp. 2664.

Zin Oo. N., & Chaikan, P. (2019). Efficient
Implementation of Strassen’s
Algorithm for Memory Allocatio
Using AVX Intrinsic on Multicore
Architectures. 34th International
Technical Conference on
Circuits/Systems Computer and
Communication. IEEE.

