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ABSTRACT 

In this study, two numerical methods were used to obtain a numerical solution of higher order 
ordinary differential equations. The two methods are the existing Runge Kutta method and 
Adam-Bashforth Moulton predictor corrector methods which have been modified to 
accommodate the general nth order ordinary differential equations. Four higher order 
differential equation problems were solved and the results obtained were consistent with when 
compared with the exact solution.  
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INTRODUCTION 

Higher order ordinary differential equations 
are expressions that involve derivatives 
other than the first. Differential equations 
arise in many areas of science and 
technology specifically whenever a 
deterministic relation involving some 
continuously varying quantities and their 
rate of change in the space and time 
(expressed as derivatives) is knownor 
postulated. This is illustrated in classical 
mechanics, where the motion of a body is 
described by its position and velocity as the 
time varies. Newton’s laws allow one to 
relate the position, velocity, acceleration 
and various forces acting on a body and 
states the relation as a differential equation 
for unknown position of the body as a 
function of time. The study of differential 
equations is wide field in pure and applied 
mathematics, physics, meteorology and 
engineering. All of these disciplines are 
concern with the properties of differential 
equations of various types.  Pure 
mathematics focuses on the existence and 

uniqueness of solutions while applied 
mathematics emphasizes the rigorous 
justification of the methods for 
approximating solutions (Butcher, 1999). 
Many problems in science and engineering 
can be reduced to the problem of solving 
differential equations under certain 
conditions. The analytical methods of 
solution can be applied to solve only a 
selected class of differential equations. 
Those equations which govern physical 
systems do not process in general closed 
form solutions and hence recourse must be 
made to numerical methods for solving 
such differential equations (Butcher, 2003). 

RUNGE KUTTA METHOD 

This method was devised by two German 
mathematicians, Runge about 1894 and 
extended by Kutta a few years later. It is 
powerful tool for the solution of ordinary 
differential equation (ODE). Most of the 
research has been oriented towards 
improving the accuracy orthe flexibility (to 
accommodate problems of diverse nature) 
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(Goeken et al., 1999). The most widely 
member of the Runge Kutta family is 
generally referred to as RK4 Classical 
Runge Kutta method or simply as the 
Runge Kutta method (Goeken et al., 1999). 
Let an initial value problem be specified as 
follows;  
ௗ௬

ௗ௫
= 𝑓(𝑥, 𝑦),           𝑦 = 𝑦଴ 𝑎𝑡 𝑥 = 𝑥଴     (1) 

Here y is an unknown function (scalar or 

vector) of time x which we would liketo 

approximate; we are told that 
dx

dy
the rate at 

which y changes is a function of x and of 

y itself. At the initial time 0x the 

corresponding y value is 0y . The function 

f and the data𝑥଴, 𝑦଴ are given. Now pick a 

step size 0h  and define 
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Equation (2) is the RK4 approximation of

)( 1nxy , and the next value of )( 1ny  is 

determined by the present value )( ny  plus 

the weighted average of four increment, 
where each increment is the product of the 
size of the interval h  and an estimated slope 
specified by function f  on the right hand 

side of the differential equation. 
For higher order differential equation, we 
introduce scalar variables ),( ji as shown 

below 1ny as 1, jiy , ,...3,2,1,0i (depends 

on the equation), nj ,...,2,1,0  
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Adams Predictor-Corrector Method 

Predictor-corrector methods refer to a 
family of schemes for solving ordinary 
differential equations using two formulae; 
predictor and corrector formulae. In 
predictor-corrector methods four prior 
values are required to find the value of y at

nx . We consider a differential equation (1). 

This problem is to be solved by Adam-
Bashforth-Moulton method. It is a fourth 
step predictor-corrector method. So, to 

compute the value of 1iy , four values 

123 .,  iii yyy  and ny  are required. These 

values are called starting values. Generally, 
any single step methods such as Euler, 
Runge-Kutta, etc,are used to find these 
values. Now, we integrate the differential 

equation (1) between ix and 1ix and obtain 

the following equation 






1

),(1

i

i

x

x

in dxyxfyy                  (4) 

The second term of the above equation 
cannot be determined as y is an unknown 

dependent variable to find this integration, 
the function ),( yxf is approximate by 

Newton’s backward interpolation formula 
below; 

(3) 
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Where hxxv i  and ),( iii yxff  . After simplification, it becomes 
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This formula is known as Adam Bashforth predictor formula and it is denoted by p
iy 1  

Thus,  
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24 1122331 iiiiiiiii

p
i yxfyxfyxfyxf

h
yy    (7) 

To obtain the corrector formula, the 
function ).( yxf is approximated by the  

following Newton’s backward 
interpolation polynomial defined in 
equation (5) 

 1
3

1
2

11 !3

)2)(1(

!2

)1(
),(  





 iiii f

vvv
f

vv
fvfyxf  

where hxxv i 1 using this approximation, the equation (2) becomes, 
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This is known as Adams Moulton corrector formula. The corrector value is denoted by c
iy 1 . 

Thus,   

  )],(9),(19),(5),([
24 1111221

p
iiiiiiiii

c
i yxfyxfyxfyxf

h
yy    (8) 

The predicted value p
iy 1 is computed from 

equation (6). The formula (8) can be used 

repeatedly to get the value of 1iy  to the 

desired accuracy. “Note that the predictor 
formula is an explicit formula, whereas, 
corrector formula is an implicit one”.  

(5) 
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The derived Adam Bashforth Predictor-
Corrector Method can be used to solve 

higher order differential equation as shown 
below; 

,...3,2,1,, 1,1  iyy jii (Depends on the order of the equation), nj ,...,5,4,3  
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Numerical Problems 

Problem 1:  xexyxyxyxy  )(2)(')(''2)('''  

The exact solution 
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Solution; 
Reducing the equation to a system of first order ordinary differential equation 
let  )()( 1 xyxy   
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Thus, the order reduction above generated three system of first order ordinary differential 
equation which are 
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The absolute errors defined by Absolute Error ii yy  where iy , is the exact solution and 

iy is the approximate solution.  
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Table 1: Calculated Error from Runge Kutta Method for Problem (1) 
X Exact 

solution 
j 

jiy ,  

1i  2i  3i  

0.0 1 0 0 1 1 
0.2 1.406373832 1 3.705200 x 10-3 6.88021552 x 10-1 4.86768273 x 10-1 
0.4 1.849234952 2 5.349800 x 10-3 5.12654302 x 10-1 1.02005638 x 10-1 
0.6 2.361970373 3 6.134200 x 10-3 4.30930264 x 10-1 2.05606482 x 10-1 
0.8 2.977624244 4 6.781400 x 10-3 4.15482851 x 10-1 1.479603948 
1.0 3.731704445 5 7.266600 x 10-3 4.49544655 x 10-1 1.918635487 

Table 2: Calculated Error from Predictor Corrector Method for Problem (1) 
X Exact 

solution 
j 

jiy ,  

1i  2i  3i  

0.0 1 0    
0.2 1.406373832 1    
0.4 1.849234952 2    
0.6 2.361970373 3 0 4.30872931 x 10-1 2.05780651 x 10-1 
0.8 2.977624244 4 7.0942 x 10-5 4.15402622 x 10-1 4.72851249 x 10-1 

1.0 3.731704445 5 4.8767 x 10-5 3.81576307 x 10-1 8.82826514 x 10-1 

Problem 2: )2sin()(3)(')(''3)(''' xxyxyxyxy       

 The exact solution: 
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Table 3: Calculated Error from Runge Kutta Method for Problem (2) 
X Exact 

solution 
j 

jiy ,  

1i  2i  3i  

0.0 0 0 0 -1 -2 
0.2 0.264279408 1 3.2546075 x 10-2 1.013943863 6.03366705 x 10-1 
0.4 0.550125805 2 5.1787011 x 10-2 8.19693108 x 10-1 4.44637524 x 10-1 
0.6 0.822004286 3 5.0369977 x 10-2 5.12762064 x 10-1 1.258230923  
0.8 1.055979854 4 2.7981739 x 10-2 1.49266054 x 10-1 1,896853485 
1.0 1.243107949 5 6.968682 x 10-3 2.37720363 x 10-1 1.00543850 x 10-1 

Table 4: Calculated Error from Predictor Corrector Method for Problem (2) 
X Exact 

solution 
j 

jiy ,  

1i  2i  3i  

0.0 0.0 0    
0.2 0.264279408 1    
0.4 0.551025805 2    
0.6 0.822004286 3 0 3.57623853 x 10-1 2.599691809 
0.8 1.055979854 4 1.50271077 x 10-1 1.036860426  2.405324793 

1.0 1.243107949 5 1.29349401 x 10-1 1.223988521 2.730148588 
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Problem 3:
xexyxyxy 35)(9)('6)(''   

The exact solution  xx ee
x

xy 33
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Table 5: Calculated Error from the two Method for problem (3) 

X Exact 
solution 

j yi,j Yi,j 

 i=1 i=2 I=1 i=2 
0 1 0 0 1   
0.1 0.985917805 1 7.5153 x 10-5 1.235913166   
0.2 0.963478229 2 3.689079 x 10-3 1.120140458   
0.3 0.955983473 3 5.430519 x 10-2 8.81924657 x 10-1 0 8.93363705 x 10-1 
0.4  0.981524016 4 6.004298 x 10-3 5.04111544 x 10-1 2.5639113 x 10-2 9.4962163 x 10-2 
0.5 1.056321016 5 7.2557242 x 10-2 1.758115750 7.4935001 x 10-2 1.141621638 

Problem 4: )(')('' xyxy   

The exact solution 
xexy )(  

1.0,1)0(',1)0(  hyy  

Table 6: Calculated Error from the Two Method for problem 4 

X Exact 
solution 

j yi,j Yi,j 

 i=1 i=2 I=1 i=2 
0 1 0 0 1   
0.1 1.105170918 1 1.70918 x 10-4 5.170919 x 10-3   
0.2 1.221402758 2 9.02758 x 10-4 1.1402758 x 10-2   
0.3 1.349858808 3 2.308808 x 10-3 1.8858808 x 10-2 0 0 
0.4  1.491824698 4 4.519698 x 10-3 2.7724698 x 10-2 1.41966590 x 10-1 1.41966590 x 10-1 
0.5 1.648721271 5 7.685771 x 10-3 3.8211271 x 10-2 1.56897339 x 10-1 1.56897339 x 10-1 

CONCLUSION 

From the tables above, the Predictor-
Corrector is more consistent than the Runge 
Kutta method for its value tends to the exact 
solution and it was discovered from our 
findings that it minimizes the computation 
time and number of iterations. We can 
observe from the table that as the order of 
the differential equation increases, the error 
increases as well, this is due to the fact that 
these methods were meant to handle only 
first order ordinary equations. 
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