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ABSTRACT 

This research compared full factorial design model and multiple linear regression models in 

seed rates, row spacing and varieties of bread wheat yield. 33 full factorial design method and 

multiple linear regression were used for the analysis.  The goodness of fit criteria used to 

evaluate the performance of structures was Akaike information criterion (AIC) and Bayesian 

information criterion (BIC). The data used composed of 270 observations for yield which were 

divided into three factors and three levels. The factors were A, B and C and the levels are 1, 2 

and 3 for each factor. Analysis shows that the data have been tested and satisfied all the 

assumptions. Based on the results in this study, it was observed that coefficient of 

determination (R2) has a highest percentage value in full factorial design model compare with 

multiple regression model. It was also found that full factorial design model is the most 

appropriate and accounted for most of the variability, According to AIC and BIC criteria. 

Keywords: Full Factorial Design, Multiple Regression, Coefficient of Determination (R2), 

Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC). 

INTRODUCTION 

Factorial design is an important method or 

design to determine the effect of multiple 

variables on a response. Traditionally, 

experiments are designed to determine the 

effect of one variable upon one response. 

(Fisher, 1935), Showed that there are 

advantages of combining the study of 

multiple variables in the same factorial 

experiment. Factorial design can reduce the 

number of experiments one has to perform 

by studying multiple factors 

simultaneously. Additionally, it can be used 

to find both main effects (from each 

independent factor) and interaction effects 

(when both factors must be used to explain 

the outcome). Factorial design works well 

when interactions between variables are 

strong and important and where every 

variable contributes significantly (Trochim, 

2006). Factorial designs can become 

cumbersome and have too many groups 

even with only a few factors (Williams, et 

al., 2006). Design of experiments is 

applicable to both physical processes and 

computer simulation models. Experimental 

design is an effective tool for maximizing 

the amount of information gained from a 

study while minimizing the amount of data 

to be collected. Factorial designs allow 

estimation of the sensitivity to each factor 

and the combined effects of two or more 

factors (Box, et al., 1978). 

(Planta, 2006) Determined low-temperature 

tolerance and genetics potential in wheat 

(Tricitum aestivum) in 23 factorial design. 

mailto:abusiham@ymail.com
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(Fareha, 2013) Determined the effects of 

process parameters on single fixation of 

reactive printing and crease resistance 

finishing of cotton fabric using 23 factorial 

designs. 

Multiple regression analysis studies the 

simultaneous emotions that two or more 

independent variables may have over one 

dependent variable (Lefter, 2004). 

Regression methods continue to be an area 

of active research. In recent decades, new 

methods have been developed for robust 

regression, regression involving correlated 

responses such as time series and growth 

curves, regression in which the predictor or 

response variables are curves, images, 

graphs, or other complex data objects, 

regression methods accommodating 

various types of missing data, 

nonparametric regression, Bayesian 

methods for regression, regression in which 

the predictor variables are measured with 

error, regression with more predictor 

variables than observations, and causal 

inference with regression. The purpose of 

this paper is to find out the best model 

between the two-method stated earlier 

using some criteria like AIC, BIC and R2. 

This paper focuses on comparing full 

factorial design and multiple regression 

using seed rates, row spacing and varieties 

of bread wheat yield.  

MATERIALS AND METHODS 

The data used for this study is secondary 

data obtained from the Irrigation Scheme 

Maiduguri. The materials used composed 

of Varieties: V1-Local Variety, V2-R23-

BB-PCBWH-98 and V3-TOP’S NARO-

CMB-PCBWH-1729. Seed Rate: 50kg/ha, 

100kg/ha and 150kg/ha and Row Spacing: 

15cm, 25cm and 35cm, the design was 

replicated 10 times in a 33 factorial design. 

The trial was conducted at Lake Chad 

Research Institute Experimental Farm 

Maiduguri during the 2011 planting season. 

These consist of making plot sizes of 3m x 

5m with 1m in-between. The experiment 

was completed same day to avoid 

introducing error due to planting same 

experiment on different days. The NPK and 

urea fertilizer were applied at split dosage, 

half at planting and the other half two weeks 

after germination. Weeding was carried out 

regularly as it was not part of the design. 

Full Factorial Design 

The three-level design is written as a 3k full 

factorial design. It means that k factors are 

considered, each at three levels. These are 

(usually) referred to as low, intermediate 

and high levels. The levels are numerically 

expressed as 0, 1 and 2. We use the 0, 1, 2 

schemes. Because, the three-level designs 

were proposed to model possible curvature 

in the response function and to handle the 

case of nominal factors at 3 levels. A third 

level for a continuous factor facilitates 

investigation of a quadratic relationship 

between the response and each of the 

factors. 

The 33 Design Model 

This is a design that consists of three 

factors, each at three levels. It can be 

expressed as 3x3x3=33 design. The model 

for such an experiment is given as follows 

Yijk= ijkijkjkikkijji ABCBCACCABBA  ++++++++
               (1)

 

http://en.wikipedia.org/wiki/Robust_regression
http://en.wikipedia.org/wiki/Robust_regression
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Growth_curves
http://en.wikipedia.org/wiki/Growth_curves
http://en.wikipedia.org/wiki/Nonparametric_regression
http://en.wikipedia.org/wiki/Bayesian_statistics
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Where each factor is included as a nominal 

factor rather than as a continuous variable. 

Main effect has 2 degree of freedom, two-

factor interactions have 4 degree of 

freedom and three-factor interactions have 

8 degree of freedom and 

Yijk = Is the yield of ith level of factor A, jth 

level of factor B and kth level of factor C 

=  Is the general mean independent of 

treatment effect or intercept (overall mean     

response of all observation). 

Ai= Effect of ith level of factor A or variety. 

Bj=Effect of jth level of factor B or seed rate. 

ABij= Interaction effect of ith level of factor 

A or variety and jth level of factor B or seed 

rates. 

Ck= Effect of kth level of factor C or Row 

spacing in between rows. 

ACik= interaction effect of ith level of factor 

A or variety and kth level of factor C or row 

spacing (in between rows). 

BCjk= Interaction effect of jth level of factor 

B or seed rates and kth level of factor C or 

row spacing (in between rows). 

ABCijk= Interaction effect of ith level of 

factor A or variety, jth level of factor B or 

seed rates and kth level of factor C or row 

spacing (in between rows). 

=ijk  Is the random error associated with 

observing yijk and assumed iid ̴ N ),0( 2 . 

We have 33 factorial design = 27 i.e ABC 

presented as follows 

 

Layout/design 

                                              A (LOW)           A (INTERMEDIATE)      A (HIGH) 

                                                          0                             1                                2 

                                              C (LOW)            C (INTERMEDIATE)       C (HIGH) 

                                               0        1        2            0         1       2               0       1           2 

                  B (LOW)    0       000    010    020      100      110    120           200    210      220    

 B (INTERMEDIATE) 1      001    011   021       101      111    121           201    211      221 

                  B (HIGH)    2      002    012    022      102      112    122           202    212     222 

2.3. Hypothesis Testing 

Ho: o=  versus  Ha: o  

Ho: oAi =  versus  Ha: oAi   

Ho: oB j =  versus  Ha: oB j   

Ho: oAB
ji =  versus  Ha: oAB

ji   

Ho: oCk =  versus  Ha: oCk   

Ho: oAC
Ki =  versus  Ha: oAC

ki   

Ho: oBC
Kj =  versus  Ha: oBC

kj   

Ho: oABC
Kji =  versus  Ha: oABC

kji   

Parameters Estimation 
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Inferences on specific factor effects requires the estimation of the parameters of ANOVA 

models such as blocks, treatments, interactions, error and total are given below (Robert, et al., 

2003);

 

Correction factor (CF) =
2

...

2

... yn
n

y
=

               (2) 

 

Where n is the total number of observation 

Total sum of square (TSS) = ( ) −
i j k

kji yy
2

...

             (3) 

 

Sum of square A (SSA) = CF
bcr

y
i

i

−

 2

..

               (4) 

 

Sum of square B (SSB) = CF
acr

y
j

j

−

 2

..

                (5) 

 

Sum of square C (SSC) = CF
abr

y
k

k

−

 2

..

                (6) 

 

Sum of square of AB (SSAB) = SSBSSACF
cr

y
i j

ij

−−−

 2

.

                                   (7) 

 

Sum of square AC (SSAC) = SSCSSACF
br

y
i k

ki

−−−

 2

.

              (8) 

 

Sum of square BC (SSBC) = SSCSSBCF
ar

y
j k

jk

−−−

 2

.

              (9) 

 

Sum of square ABC (SSABC) = 

SSBCSSACSSABSSCSSBSSACF
r

y
i j k

ijk

−−−−−−−

 2

                                        (10) 
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Sum of square Error (SSE) = SSABCSSBCSSACSSABSSCSSBSSATSS −−−−−−−  (11) 

 

 

Analysis of Variance for 33 Factorial Experiment in RCB Design 

Table 1: Summary of ANOVA for 33 in RCB Design 

Source of 

Variation 

Degree of 

Freedom 

Sum of Square 

Replication 

 

Treatment 

 

 

Variety (A) 

 

 

Seed Rate (B) 

 

Row Spacing(C) 

 

A X B 

 

A X C 

 

B X C 

 

 

A X B X C 

 

 

Error 

 

Total 

 

r-1 

 

abc-1 

 

 

a-1 

 

 

b-1 

 

c-1 

 

(a-1)(b-1) 

 

(a-1)(c-1) 

 

(b-1)(c-1) 

 

 

(a-1)(b-1)(c-1) 

 

 

(r-1)(abc-1) 

 

r(abc-1) 

 

27 ( )
2

1

.......
=

−
r

i

i yy  

 

9r ( )
22

.......
=

−
oj

j yy  

9r ( )
22

.......
=

−
ok

k yy  

9r ( )
22

.......
=

−
ol

l yy  

3r ( )2
............ +−−

jk

kjjk yyyy  

3r ( )2
............ +−−

jl

ljlj yyyy  

3r ( )
2

............ +−−
kl

lkkl yyyy  

( )2
.................... −+++−−−

jkl

lkjklljjkjkl yyyyyyyyr  

 

( )2
........ +−−

ijkl

jkliijkl yyyy  

Where r is the number of replications and a, b, c are levels of the three factors A, B, C 

respectively. 

Multiple Regression Co-efficient 

Regression analysis is a useful technique in 

modelling and analyzing several variables, 

when the focus involves identifying the 

relationship between a dependent variable 

and one or more independent variables. It is 

widely used in different fields of study. For 

instant, in reliability and life-testing 

experiments, often one of the primary 

purposes is to study the effect of covariates 

on the failure time distribution and to 

develop inference on the survival 

probability or some other reliability 

characteristics of equipment. A model of 

the relationship is hypothesized and 

estimates of the parameter values are used 

to develop an estimated regression 
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equation. Various tests are then employed 

to determine if the model is satisfactory. If 

the model is deemed satisfactory, the 

estimated regression equation can be used 

to predict the value of the dependent 

variable given value for the independent 

variables. The variability of a dependent 

variable y can be explained by a function of 

several independent variables, x1, x2,.., xn. 

The multiple regressions for three 

independent variables is given as; 

Y= X +  (12) 

Where  

Y = is the vector of observations of a 

dependent variable 

 = is the vector of parameters 

X = is the matrix of observations of 

independent variables 

 = is the vector of random errors  

The vector of estimated values of a 

dependent variable can be expressed by 

using X and Y 

( )
1

Ŷ Xb X X X XY
−

 = =   (13) 

The variance 2 is estimated by 

RES
RES MS

pn

SS
S =

−
=2

    (14) 

Where eeSSRES
= is the residual sum of 

square. 

(n-p) = is the degrees of freedom 

P = is the number of parameters in the 

model 

RESMS =
 
is the residual mean square 

Akaike Information Criterion (AIC) 

Akaike information criterion is a measure 

of the goodness of fit or a test for goodness 

of fit of an estimated statistical model 

(Litell, et al., 1996). The formula for the 

criterion is given as follow: 

AIC = 2l + 2d   (15) 

Where 

l = is the log likelihood evaluated at the 

parameter estimates or restricted log-

likelihood maximum value and d is 

parameter number.  

Bayesian Information Criterion (BIC) 

The Bayesian information criterion (BIC) 

or Schwarz bayes information criterion 

(SBC) is a criterion for model selection 

among a finite set of models. It is based in 

point of the likelihood function and it is 

closely related to Akaike information 

criterion (AIC). In facts, Akaike was so 

impressed with Schwarz’s Bayesian 

formalism that he developed his own 

Bayesian formalism, now often referred to 

as the ABIC for “Akaike Bayesian 

Information Criterion” (Litell, et al., 1996). 

The formula for the BIC is given as 

BIC = -2lnL + kln(n)   (16) 

Where L is the restricted log-likelihood 

maximum value 
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k = is the parameter number and n is the 

observation number 

Coefficient of Determination (R2) 

R2 is a statistic that will give some 

information about the goodness of fit of a 

model. In regression, the R2 coefficient of 

determination is a statistical measure of 

how well the regression line approximates 

the real data points. An R2 of 1 indicates that 

the regression line perfectly fits the data. 

Values of R2 outside the range 0 to 1 can 

occur where it is used to measure the 

agreement between observed and modeled 

values and where the "modeled" values are 

not obtained by linear regression and 

depending on which formulation of R2 is 

used. If the first formula above is used, 

values can be greater than one. If the second 

expression is used, there are no constraints 

on the values obtainable. The formula for 

R2 is given below  

tot

res

SS

SS
R =2

                          

 

Where 

( )
2

1

ˆ
=

−=
n

i

ires yySS

   (17) 

 

( )
2

1

ˆ
n

reg i

i

SS y y
=

= −    (18) 

( )
2

1

n

tot i

i

SS y y
=

= −    (19) 

1

1 n

i

i

y y
n =

=      (20) 

n = number of observations 

The notations 
RSS  and 

ESS  should be 

avoided, since in some texts their meaning 

is reversed to Residual sum of squares and 

Explained sum of squares, respectively. 

Adjusted R2 

The use of an adjusted R2 (often written as 
2R and pronounced "R bar squared") is an 

attempt to take account of the phenomenon 

of the R2 automatically and spuriously 

increasing when extra explanatory 

variables are added to the model. It is a 

modification due to (Theil, 1961), of R2 that 

adjusts for the number of explanatory terms 

in a model relative to the number of data 

points. The adjusted R2 can be negative, and 

its value will always be less than or equal to 

that of R2. Unlike R2, the adjusted R2 

increases when a new explanator is 

included only if the new explanator 

improves the R2 more than would be 

expected by chance. The adjusted R2 is 

defined as: 
t

tot

e

res

df
SS

df
SS

R −= 12   (21) 

RESULTS 

Analysis of Variance for YIELD, Using 

Adjusted SS for Tests 

Table 2 shows that two factors are 

significant. That is factor A and factor C are 

significant, Fcal at df (2, 243) is greater than 

Ftab at df (2, 243), 05.0=   and P<0.05. but 

factot B is not significant, at df (2, 243), 

05.0= , also all the interactions are 

http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Explanatory_variable
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significant A*B, A*C, B*C at df (4, 243), 

05.0=  and A*B*C at df (8, 243), 

05.0= . Hence, it can be concluded that 

the yield of seed rates, row spacing, and 

varieties have different effects at different 

levels which indicates that there is 

significant different in yield between 

different factors. In addition, R2 is 

moderately ok which explained the 

variability of the data. 

Table 3 ANOVA for regression also shows 

that only factor A is significant while the 

rest are not significant. Thus, it can be 

concluded that there is no significant 

difference on the yield of bread wheat in the 

effects of seed rates, row spacing and 

varieties because all the Fcal at different df 

are less than the Ftab in order word all the 

P>0.05. Hence it would be concluded that 

there is no different between the yields of 

bread wheat. In addition, R2 value is small 

which shows that the variability of the data 

explained is not much compare to that of 

full factorial. 

 

 

 

Table 2: ANOVA for Yield, Using Adjusted SS for Test 

SOURCE DF Seq SS Adj SS Adj MS F P 

SEED RATES 2 377931 377931 188966 5.76 0.004 

VARIETIES 2 31517 31517 15759 0.48 0.619 

ROW SPACING 2 204013 204013 102006 3.11 0.047 

SEED RATES *VARIETIES 4 644273 644273 161068 4.91 0.001 

SEED RATES*ROW SPACING 4 362224 362224 90556 2.76 0.029 

VARIETIES*ROW SPACING 4 685262 685262 171315 5.22 0.000 

SEED RATES*VARIETIES*ROW 

SPACING 8 758717 758717 94840 2.89 0.004 

ERROR 243 7978319 7978319 32833     
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TOTAL 269 1.1E+07 1.1E+07       

NB: Bolded Fcal Values indicates that the factors and the interactions are significant.  

S = 181.198   R-Sq = 27.75%   R-Sq(adj) = 20.02% 

AIC = 1215.05  BIC = 1207.05 

Yijk= ijkijkjkikkijji ABCBCACCABBA  ++++++++                (22)
 

 

10121817 = 0 + 37793 + 31517 +204013 + 64427 + 362224 + 685262 + 758717 + 7978319 

Table 3: ANOVA for Multiple Regression 

SOURCE DF SEQ SS ADJ SS ADJ MS F P 

REGRESSION 3 231045 231045 77015 1.88949 0.13077 

SEED RATES 1 176075 176075 176075 4.33217 0.03834 

VARIETIES 1 14031 14031 14031 0.34522 0.55733 

ROW SPACING 1 40939 40939 40939 1.00726 0.31647 

ERROR 266 10811212 10811212 40644     

LACK-OF-FIT 23 2832893 2832893 123169 3.75143 0.00000 

PURE ERROR 243 7978319 7978319 32833     

TOTAL 269           

NB: Bolded Fcal Value indicate that the 

factor is significant. Also we used Mean 

Square Error to obtain the F and P values of 

Regression, Seed rates, Varieties and Row 
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spacing, then Mean Square Pure Error to 

obtain F and P values for Lack of fit. 

S = 201.603    

R-Sq = 2.1%          

R-Sq(adj) = 1.0% 

AIC =1250.68   

BIC = 1242.68 

From Table 4, all the criteria shows that full 

factorial design model is better than 

multiple regression model using such type 

of data because, if you are comparing R2 

with different models the one that has the 

largest percentage is the best while AIC and 

BIC indicates the model that has lowest 

values of AIC and BIC is the best. Also 

MSE of full factorial design model is the 

least compare to that of multiple regression 

hence full factorial design is the best. 

Table 4: Summary for Full Factorial and Multiple Regression Model 

Model Selection Full Factorial Multiple Regression 

R2 27.75% 2.10% 

AIC 1215.05 1250.68 

BIC 1207.05 1242.68 

MSE 32833 40644 

Figure 1 indicates that the distribution of 

residuals is normal. Because, from the 

figure you can see that the residuals (dots in 

red colour) resemble a straight line 

therefore the normality assumption hold. 

Because the data is said to be normal when 

the probability plot is linear in shape. 
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Figure 1: Normal Probability 
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Figure 2: Constant Variance 

Figure 2 can be checked with residuals 

versus fits plot. This shows that there is 

constant variance since it didn’t show any  

recognizable patterns, the residuals (dots in 

red colours) scattered all over the plot. 

Residuals increases as the fitted values 

increases. 
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Figure 3: Independence 

Figure 3 can also be checked with residuals 

versus order. A positive correlation or a 

negative correlation indicates that the 

assumption is violated. The above figure 

shows that the plots (dots in red colour  

attached with blue lines) are independent 

since both do not reveal any pattern. 

Therefore, the independence assumption is 

satisfied. In summary the figures satisfied 

almost all the assumptions which make the 

data to be good. 
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DISCUSSION 

33 multi-level factorial design ANOVA 

methods and multiple regression ANOVA 

methods were used in this research to find 

out the best model among them using R2, 

AIC and BIC model selection in seed rates, 

row spacing and varieties of bread wheat 

yield. The data satisfied the assumption of  

 

 

normality, independence and constant 

variance based on the outcome of the result. 

In this study, the set of data used was tested 

for adequacy and found to satisfy the 

assumption of normality, independence and 

homogeneity. Multiple regressions analysis 

between the dependent variable (yield) and 

the three factors were mild positive. 33 

multilevel full factorial design analysis 

shows that two factors A and C are 

significance while the other factor B is not 

significance. Null hypothesis indicates that 

the hypothesis should be rejected and 

conclude that there is significance 

difference between the yields. Coefficient 

of determination (R2) also indicates that the 

analysis is satisfied. Full factorial design is 

the best model compare to multiple 

regression model since; it gives the highest 

percentage value of coefficient of 

determination (R2). Hence all the analysis 

uses 05.0= significance level and SPSS 

software version 24.0 was used for the 

analysis. 

CONCLUSION 

This research is concerned with comparing 

full factorial design model and multiple 

regression model to determine best model 

in seed rates, row spacing and varieties of 

the bread wheat yield. Based on R2, AIC, 

BIC and MSE full factorial design was the 

most appropriate model. Full factorial 

design method allow a large number of 

variables to be investigated in a compact 

trial, enable outliers in the data to be 

identified and provide detailed process 

knowledge. R2(adj) penalizes the statistic as 

extra variables in the model.  

REFERENCES 

Box, G. E. P., Hunter, W. G. & Hunter, J. 

S., 1978. Statistics for Experiments. 

New York:             Wiley. 

Fareha, A., 2013. Effects of process 

Parameters on a Single Step 

Fixation of Reactive 

             printing and Crease 

Resistance Finishing of Cotton 

Fabrics using 2 by 3 

             Factorial Design. 

International Journal of Textile 

Science, pp. 7-11. 

Fisher, R. A., 1935. The Design of 

Experiments. Edinburgh, Scotland: 

Oliver and Boyd. 

Lefter, C., 2004. Marketing Researches. 

Brasov: Published by Infomarket. 

Litell, R. C., Milleken, G. A., Stroup, W. 

W. & Wolfinger, R. D., 1996. SAS 

System for             Mixed 

Models. Cary, N. C: SAS Institute. 

Planta, E., 2006. Evidence for active 

Electron flow in twig Chlorenchyma 

in the Presence of            an 

Extremely deficient Linear Electron 

Transport Activity. s.l.:s.n. 

Robert, L. M., Richard, F. G. & James, L. 

H., 2003. Statiscal and Analysis of 

Experiments.            New York: 

John Wiley and Sons Publication. 

Theil, H., 1961. Economic Forecast. 

Holland: Armsterdam. North. 



   

146 
 

Bima Journal of Science and Technology, Vol. 3(2) January 2020. ISSN: 2536-6041 

 
 

Trochim, W. M. K., 2006. Factorial 

Design. s.l.:Research Methods 

Knowledge Base. 

Williams, K. D. et al., 2006. Evaluation of 

a Component of the Cloud response 

to climate in             an Inter-

comparison of Climate Models. 

s.l.:s.n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


