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ABSTRACT 

The simplest scalar chiral model of graphene suggested earlier and based on the SU (2) order 

parameter is generalized by including 8-spinor field as an additional order parameter for the 

description of spin (magnetic) excitation in graphene. As an illustration the interaction of the 

graphene layer with the external magnetic field was studied and the result showed the 

weakening of the field inside the graphene.  
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INTRODUCTION 

Quantum mechanics had many clear 

understandings of phenomena from 

astrophysics It also give rise to analogies 

with particle physics, including an exotic 

type of tunneling which was predicted by 

the Swedish physicist Oscar Klein. 

Graphene has attracted increasing interest 

due to its remarkable properties both 

physical and chemical.Graphene allotrope 

of carbon was discovered lately due to the 

reason that: graphene was expected to be 

unstable in the Free State before its 

discovery, no experimental tool existed to 

detect the one-atom thin material 

(graphene).  

The Nobel Prize in Physics 2010 honours 

two scientists, who have made the decive 

contribution to this development. They are 

Andre K.Geim and Konstantin S. 

Novoselov, both at the University of 

Manchester, UK. They have succeeded in 

producing,isolating, identifying and 

characterizing graphene (K.S.Novoselov & 

A.K.Geim, 2005) However, the zero band 

gap of monolayer graphene limits it’s 

further electronic and optoelectronic 

applications (.Zhang & S.S.Lin, 2016). 

Graphene made of carbon atoms arranged 

on a honeycomb lattice with lattice constant 

𝑎 = 1.42�̇�.  These graphitic materials Fig 

(1) are classified as the allotropes of 

graphene (allotropes are different structural 

modifications of an element in the same 

phase of matter, e.g., different solid form).  

 

Figure 1: Allotropes of carbon (Karthik 

Paneer Selvam & Surya Prakash Sing, 

2014).  

The fact that graphene is a gapless 

semiconductor it cannot be used in pristine 

form for Nano-electronic application 
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(Sivabrata Sahu & G.C.Roout, 2017). The 

origin of the band structure is simply 

related to the fact that un-hybridized PZ 

overlap with nearest neighbors to form 𝜋 – 

orbitals spread out in energy and give rise 

to band states extending over a range of 

energies (R.Saito, et al., 1998).Every 

carbon atom of the graphene lattice uses 

three of its four electrons in covalent 

bounding to three other carbon atoms, 

while the fourth electron is free to move 

through the lattice by tunnelling effects.In 

summary, graphene is harder than diamond 

but flexible like a piece of iron sheet and a 

much better conductor of electricity than 

other materials. With such properties, 

graphene could revolutionize the whole 

micro- and computer-technology 

The in cooperation of magnetism to the 

long list of graphene capabilities has been 

pursued since its first isolation in 2004 

(A.B.Ahmed, et al., 2017) and also in the 

case of quantum dots (Yuanyuan Sun, et al., 

2017) and artificial magnetic fields (Jose 

Tedeu Arantes, 2018)(Milan Orlita, et al., 

2013)It is also well known that local 

magnetic moment may persist in 

condensed-matter systems, giving raise to 

many different ordered 

configurations.Graphene, as a metal-free 

material, contains no magnetic atoms. Its 

honeycomb structure contains a bipartite 

lattice, formed by two interpenetrating 

triangular sublattics, (A and B) (ERJUN 

KAN, et al., 2016). The magnetism 

discovered in graphene-based systems 

opens the possibility of their spintronics 

and other applications 

MATERIALS AND METHODS 

Mathematical Formulation of the Model 

The s- and p- hybridization effect for the 

valence electrons of carbon atoms appear to 

the main property of the electron bonding 

in mono-atomic carbon layers of graphene. 

For realizing this effect the chiral model 

(YU.P.Rybakov, 2012) of graphene was 

suggested, the unitary SU(2) matrix 𝑉 =

𝑎0𝜏0  + 𝑖(�⃗�𝜏) being considered as an order 

parameter.  

where 𝜏0  , 𝜏 denote the unit matrix and the 

Pauli matrices respectively, scalar and 

vector fields 𝑎0, �⃗� ; 𝑎0
2 + �⃗�2 = 1, 

describing s- and p- states of the free 

valence electron. For the description of spin 

and quasi-spin excitations in graphene, the 

latter ones corresponding to independent 

excitation modes of the two triangular sub-

lattices of graphene, we introduce the two 

Dirac spinors 𝜓1 ,𝜓2  and consider the 

combined spinor field 𝛙 =  𝜉 ⊗ (𝜓1 ⊕

 𝜓2 ), as a new order parameter, where 𝜉 

stand for the first colomn of V. 

TheLagrangian density L of the model, 
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The Lagrangian in (1) Contain the projector 

𝑃 = 𝛾𝜐𝑗𝜐 on the positive energy states, 

where 𝑗𝜇 =  𝛙𝛾𝜇   𝛙, μ=0,1,2,3, designetes 

the Dirac current, 𝛙 = 𝛙+𝛾0   and 

𝛾𝜇   stands for Dirac matrices.  

The model contains the two constant 

parameters: the exchange energy I per 
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lattice spacing and some characteristic 

inverse length√𝜆.  

The interaction with electromagnetic field 

is realized though the extension of the 

derivative: 𝐷𝜇 = 𝜕𝜇 −  𝑖𝑒0𝐴𝜇𝛤𝑒 , with 𝑒0 >

0 being the coupling constant and 𝛤𝑒 =

(1 − 𝜏3 )/2 being the charge operator 

chosen in accordance with the natural 

boundary condition at infinity: 𝑎0(∞) = 1. 

However, the additional interaction term of 

the Pauli type should be added to take into 

account the proper magnetic moments of 

the electrons. Here𝜎𝜇𝜐 = [𝛾𝜇   , 𝛾𝜐  ]/4 , 

𝐹𝜇𝜐 =  𝜕𝜇𝐴𝜐 −  𝜕𝜐𝐴𝜇 and 𝜇0 > 0 denotes 

the Bohr magneton per lattice spacing 

cubed. 

Let us now consider the case with the 

orientation of the magnetic field 𝐵0 along 

the z-axis. Using the cylindrical coordinates 

r, ϕ, z we introduce the vector potential 

𝐴𝜑 = 𝐴, with the intensity of the magnetic 

field being 𝐵𝑧 =  𝜕𝑟(𝑟𝐴)/𝑟,  𝐵𝑟 =  −𝜕𝑧𝐴 

and the natural boundary condition at 

infinity being imposed: 𝐴(𝑧 → ∞) =

 𝐵0 𝑟/2. The model in question admits the 

evident symmetry 𝜓1 ⇔  𝜓2 , 𝛾0   - 

invariance 𝛙 ⇒ 𝛾0 𝛙, that permits to 

introduce 2-spinor φ by putting 𝜓1 =

 𝜓2 = 𝑐𝑜𝑙 (φ, φ),  φ= col (v,u).  

RESULTS 

Considering the smallness of the radial 

magnetic field we assumed that: 𝐵𝑟 ≪  𝐵𝑧 . 

In this approximation the new discrete 

symmetry holds: φ⇒-𝜎3𝜑, v ⇒ −𝑣, u ⇒

𝑢 ∗, 𝑎2,3 ⇒ −𝑎2,3 , that permits to 

introduce the chiral angle Θ: 𝑎0 =

cos Θ,𝑎1 = sin Θ and consider the axially-

symmetric configuration: u = u (r,z),   Θ = 

Θ (r,z). As a result, the new Lagrangian 

density takes the form: 

𝐿 = −8𝐼 [𝑅2(𝜕⏊𝛩)2 +
1

4
 (𝜕⏊𝑅)2 + 𝑒0

2𝑅2𝐴2𝑠𝑖𝑛2𝛩] − 8𝜆2𝑅2𝑠𝑖𝑛2𝛩 + 8𝜇0𝑅𝑠𝑖𝑛2𝛩
1

𝑟
𝜕𝑟(𝑟𝐴) 

 −
1

8𝜋
[

1

𝑟2 (𝜕𝑟(𝑟𝐴))2 + (𝜕𝑧𝐴)2],    (2) 

where the new variable for the spin, chiral 

field is introduced: R=u2 and 𝜕⏊ signifies 

the differentiation with respect to r and z. 

The equations of motion corresponding to 

(2), become 

𝐼 [
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑅) + 𝜕𝑧

2𝑅 − 4𝑅(𝜕⏊𝛩)2 − 4𝑒0
2𝑅𝐴2𝑠𝑖𝑛2𝛩] = 2𝑠𝑖𝑛2𝛩 [2𝜆2𝑅 − 𝜇0

1

𝑟
𝜕𝑟(𝑟𝐴)](3) 

𝐼 [
2

𝑟
𝜕𝑟(𝑟𝑅2𝜕𝑟𝛩) + 2𝜕𝑧(𝑅2𝜕𝑧𝛩) − 𝑒0

2𝑅2𝐴2𝑠𝑖𝑛2𝛩] = 𝑅𝑠𝑖𝑛2𝛩 [𝜆2𝑅 − 𝜇0
1

𝑟
𝜕𝑟(𝑟𝐴)](4) 

1

4𝜋
[

1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝐴) + 𝜕𝑧

2𝐴 −
𝐴

𝑟2] = 16𝐼𝑒0
2𝑅2𝐴𝑠𝑖𝑛2𝛩 + 8𝜇0𝜕𝑟(𝑅𝑠𝑖𝑛2𝛩)                               

(5) 

Let us now search for solutions to the 

equations (3), (4), (5) in the domain 𝑧 → ∞, 

where Θ→0, R=1/4 +ς,A=B0r/2+α, 𝜍 →

0, 𝛼 → 0. Thus, the equation (4) takes the 

form: 

𝐼 [
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝛩) + 𝜕𝑧

2𝛩 −
1

4
𝑒0

2𝐵0
2𝑟2𝛩] = 𝛩[𝜆2 − 4𝜇0𝐵0](6) 

and its solution can be found by separation of variables: 

𝛩 = 𝛩0 exp(−𝑣𝑟2 − 𝜅𝑧), 𝛩0 = 𝑐𝑜𝑛𝑠𝑡, 
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with the following constant parameters: 

𝑣 =
𝑒0𝐵0

4
, 𝜅2 =

𝐵0

𝐼
(𝑒0𝐼 − 4𝜇0) +

𝜆2

𝐼
                                        (7) 

Inserting (6) into (3) and (5), one gets the inhomogeneous equations for ς and α : 

1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝜍) + 𝜕𝑧

2𝜍 = (𝜕⏊𝛩)2 + [
1

4
𝑒0

2𝐵0
2𝑟2 +

1

𝐼
[𝜆2 − 4𝜇0𝐵0]] 𝛩2                                                       (8) 

1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝛼) + 𝜕𝑧

2𝛼 −
𝛼

𝑟2 = 2𝜋𝑒0𝐵0(𝑒0𝐼 − 4𝜇0)𝑟𝛩2 ≡ 𝛿𝑟𝛩2 (9) 

with the solution of the form: 

𝜍 = 𝛩0  
2 exp(−2𝑣𝑟2 − 2𝜅𝑧)𝑁(𝑟);  𝛼 = 𝛿𝛩0

2 exp(−2𝑣𝑟2 − 2𝜅𝑧)𝐾(𝑟)          (10) 

where the radial function N(r) and K(r) satisfy the following equations: 

𝑁" + 𝑁′ [
1

𝑟
− 8𝑣𝑟] + 𝑁 [2𝐵0 (𝑒0 − 8

𝜇0

𝐼
) + 4

𝜆2

𝐼
+ 𝑒0

2𝐵0
2 𝑟2] =                                            (11) 

1

2
𝑒0

2𝐵0
2𝑟2 + 𝑒0𝐵0 +

2

𝐼
(𝜆2 − 4𝜇0𝐵0) 

𝐾" + 𝐾′ [
1

𝑟
− 8𝑣𝑟] + 𝐾 [4𝜅2 − 8𝑣 + 16𝑣2𝑟2 −

1

𝑟2] = 𝑟(12) 

The magnetic intensity was estimated to be: 

𝐵𝑧 = 𝐵0 + 𝑏𝑧 , 𝑏𝑧 =
1

𝑟
𝜕𝑟(𝑟𝛼), 𝐵𝑟 = 𝑏𝑟 = −𝜕𝑧 𝛼 

Taking into account from (12) at 𝑟 → ∞, 𝐾 ≈ (𝑒0
2𝐵0

2𝑟)−1  one gets from (10𝑏𝑧 =

− 2𝜋(𝑒0𝐼 − 4𝜇0)Θ0
2exp(−2𝑣𝑟2 − 2𝜅𝑧)                                                               (13) 

𝑏𝑟 =
4𝜋𝜅

𝑒0𝐵0𝑟
(𝑒0𝐼 − 4𝜇0)Θ0

2exp(−2𝑣𝑟2 − 2𝜅𝑧)                                                    (14) 

DISCUSSION 

In the phenomenological approach to the 

study of condensed system such as 

graphene The spin and quasi-spin 

excitations og graphene layer and the 

interaction with electromagnetic field is 

realized though the extension of the 

derivative and The model in question 

admits the evident symmetry𝜓1 ⇔  𝜓2 , 

𝛾0   - invariance and 𝛙 ⇒ 𝛾0 𝛙, that permits 

us to introduce 2-spinor φ , chiral field and 

the magnetic fieldby putting 𝜓1 =  𝜓2 =

𝑐𝑜𝑙 (φ, φ),  φ= col (v,u).  

 From equations (13) and (14) our result 

predicts the diamagnetic or paramagnetic 

behavior. It means that the parameter 𝑒0𝐼 −

4𝜇0 is positive and the weakening of the 

magnetic field inside the graphene is 

predicted in accordance with equations (13) 

and (14). With the promising results 

obtained, graphene can become an ideal 

material for spintronics and other 

optoelectronic devices. Therefore, it would 

be interesting in the future to obtain 

numerical estimates for the parameters of 

the model. 

CONCLUSION 

The s- and p- hybridization effect for the 

valence electrons of carbon atoms appear to 

the main property of the electron bonding 

in mono-atomic carbon layers of graphene. 

From the results obtained in equations (13) 

and (14) according to the sign of the 
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multiplier our graphene material reveals 

diamagnetic or paramagnetic behavior. In 

view of definitions adopted one has, 𝑒0 =
𝑒

ħ𝑐
, 𝜇0 =

𝑒ħ

2𝑚𝑒𝑐𝑎3 , 𝐼 =
𝐸𝑒𝑥𝑐ℎ

𝑎
, where the 

exchange energy is usually adopted as 

𝐸𝑒𝑥𝑐ℎ = 2,9𝑒𝑉 and the lattice spacing as 

𝑎 = 3,56. 10−8 𝑐𝑚, with e being the 

absolute value of the electron charge. 

Finally the following numerical values 

were obtained: 𝑒0𝐼 = 2. 103 𝐺𝑎𝑢𝑠𝑠,  𝜇0 =

2. 102 𝐺𝑎𝑢𝑠𝑠 .  
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