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ABSTRACT
The cybersecurity field faces significant challenges in detecting and classifying malware due to
the continuous propagation of more complex and varied malware. Imbalanced datasets where
benign samples outweigh malware samples, which create significant problems within this
domain resulting in biased model performance. This study developed a hybrid shallow CNN with
LSTM integration to overcome the problem of malware classification. This method combines
CNN’s spatial feature extraction capabilities with LSTM’s sequential pattern recognition to
analyze malware’s static and dynamic properties effectively. The methodology involved
evaluating the model on a dataset with significant class imbalances through the adoption of
SMOTE. The model evaluation relied on several key performance metrics, including accuracy,
precision, recall, and the F1-score. The study also compared the developed model with existing
models to demonstrate its superior performance The hybrid CNN-LSTM model proved effective
by obtaining 99.44% accuracy for balanced datasets while sustaining 99.22% accuracy for
imbalanced datasets. The results confirm that reducing class imbalance improves the accuracy of
machine learning models for malware classification. The model demonstrated better performance
than earlier research works, as shown through its higher accuracy rate. This research develops
malware detection techniques and delivers a reliable solution for real-world cybersecurity
applications.
Keywords: Convolutional Neural Network, Cyber Security, Malware, Long-Short-Term
Memory.

INTRODUCTION
In today’s digital landscape, the advent of
malicious software attacks is a significant
threat to cybersecurity (Alzaylaee et al., 2020).
Malware or malicious software includes a
variety of harmful executable software like
viruses, worms, trojan horses, bots and
spywares which are harmful to computer
systems thereby causing significant damages
(Krishnamurthi et al., 2022).
The diversity of malware coupled with its
continuous growth is a significant challenge
to network security (Abdullah et al., 2022).
This massive growth was intensified by the
COVID-19 pandemic where online activity

massively increased leading to heavy reliance
on network infrastructure which led to the risk
of malevolent actors targeting the
infrastructure for malware attacks (Hakak et
al., 2020).
This massive growth led to an increase of up
to 360,000 new malware variants detected in
2020 representing a 5.2% increase from
previous years. Automated malware creation
tools like SpyEye and Zeus have significantly
contributed to the scourge (Awan et al., 2021).
Other devices connected to the Internet like
IoT devices are also at high risk of malware
attacks potentially leading to data leaks,
unauthorized access and physical injury,
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financial losses etc. (Awan et al., 2021).
Therefore, robust cybersecurity measures are
necessary to protect the millions of IoT users
from these harmful assaults.
Despite efforts by cybersecurity providers and
antivirus software manufacturers to identify
and block malware, a significant number of
samples, including “zero-day” malware,
evade conventional scanning tools reliant on
signatures (Hindy et al., 2020). As a result,
the information security industry is
reevaluating malware recognition techniques,
moving beyond signature-based models.
While the cybersecurity industry continuously
strives to monitor and combat malware, cyber
attackers persist in developing evasive
techniques such as polymorphism,
metamorphism, and code obfuscation,
outpacing traditional mitigation systems
(Imamverdiyev & Baghirov, 2024). The
emergence of these techniques, coupled with
the increasing number of households with
multiple vulnerable devices, necessitates the
development of fast and reliable techniques to
identify and combat new malware (Awan et
al., 2021).
Malware classification plays a fundamental
role in malware analysis as it helps in
understanding the diverse categories of
malwares, their potential impact on personal
computers, and the necessary defense
strategies. When a malicious software is
detected on network traffic, it becomes
necessary to properly assign it to the
appropriate malware family through a
classification mechanism. While several
methods exist for detecting known malware,
identifying zero-day malware remains a
challenging endeavor in the field. Building a
reliable malware classifier becomes especially
challenging due to the scarcity of high-quality
labeled data (Di Troia et al., 2019).

Several researchers have explored deep
learning-based techniques to enhance
malware classification. Karat et al. (2024)
introduced a CNN-LSTM hybrid model that
integrates deep learning and behavioural
analysis to improve malware detection
accuracy. Their study demonstrated that
traditional static signature-based approaches
are inadequate for identifying advanced
malware variants, while CNNs and LSTMs
together effectively classify malware based on
API call sequences. The model achieved 96%
validation accuracy, confirming the
effectiveness of deep learning-based malware
classification (Karat et al., 2024). However,
their study did not address dataset imbalance,
which may impact the model’s generalisation
capabilities.
Similarly, Bensaoud and Kalita (2024)
proposed a CNN-LSTM-based malware
classification model that incorporates API
calls and opcode sequences as feature
representations. The researchers experimented
with n-gram representations (N = 2, 3, 10)
and fine-tuned various deep learning
architectures, including ConvNeXt, RegNetY,
Swin-T, and EfficientNetV2, achieving
99.91% accuracy using 8-gram sequences
(Bensaouda & Kalita, 2024). Their study
demonstrated that integrating NLP-based
techniques such as TF-IDF and Bag-of-Words
(BoW) can enhance malware classification
performance. However, despite the high
accuracy reported, their work did not explore
the impact of adversarial attacks or model
robustness against evolving malware threats,
which remains a significant challenge in real-
world deployment.
The problem addressed in this study is that of
data class imbalance through the adoption of
SMOTE. The research by Karat et al. (2024)
implemented a CNN-LSTM hybrid model for
malware detection, achieving validation
accuracy of 96%. However, the study did not
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address the issue of data class imbalance. This
study aims to utilize a one-dimensional CNN
with LSTM and application of SMOTE to
address the class imbalance.
While the study by Karat et al. (2024)
presents a CNN-LSTM hybrid model for
malware detection, achieving a high
validation accuracy of 96%, it does not
explicitly address the issue of class imbalance
within the dataset. The dataset used in their
research comprises 2,500 malware samples
and 1,000 benign samples, indicating a
skewed distribution that could potentially bias
the model toward classifying malware more
accurately than benign files. Imbalanced
datasets in deep learning can lead to
overfitting toward the majority class, reducing
the model’s ability to correctly identify

minority-class instances. However, the study
does not mention any application of data
balancing techniques, such as the Synthetic
Minority Oversampling Technique (SMOTE),
which has been proven effective in mitigating
class imbalance issues by generating synthetic
samples for the under-represented class.
Based on the gap identified, this study will
implement SMOTE in a CNN-LSTM-based
malware detection system, which is expected
to enhance the model’s ability to generalise,
reducing false negatives and improving the
detection of previously unseen malware
samples. This research gap presents an
opportunity to develop an improved CNN-
LSTM model that integrates SMOTE for data
balancing, leading to a more robust and fair
malware classification system.

MATERIALS AND METHODS
The flow of methodology for this research is
shown in Figure 1, which outlines the steps
undertaken to train and evaluate the
performance of the model using metrics such
as accuracy, precision, recall and f1-score of
the hybrid shallow CNN-LSTM model. The

implementation begins with the preprocessing
of the selected dataset followed by model
design through the selection of the appropriate
parameters for the CNN component of the
model, then training of the dataset and then
passing the output to the LSTM classifier for
accurate malware classification. Furthermore,
the performance accuracy of the model will
then be evaluated.

Dataset Acquisition and Description
This study used a publicly available malware
dataset published by the United States Air
Force for the purpose of research. The dataset
comprises of 42,797 malware and 1,079 of
benign data. The dataset is made up of API
call sequences with each representing the first

100 unique and continuous API calls linked to
the parent processes. (Bensaoud & Kalita
2024).
These sequences are extracted from the ‘call’
components of the Cuckoo Sandbox reports.
Figure 2 shows the class distribution of the
dataset.

Figure 1:Methodology flow.
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Figure 2: Data class distribution.
It is crucial to observe that the dataset
depicted in Figure 2 shows a significant class
imbalance, highlighting the need to employ
appropriate balancing methods before directly
inputting it into the model.
Dataset Distribution
The dataset for this research contains a total
of 43,876 API call sequences which is broken

down as 42,797 malware sequences and 1,079
benign sequences. With this significant
disparity between the 97.5% malware and
2.5% benign classes, the need for careful
handling of the model is imperative.
Before the training begins, the dataset will be
separated into training and testing sets in the
ratio of 75:25 for the preparation of the model.
The division into training and testing sets is
essential for assessing the model's efficacy.
The training set supplies essential data for the
model to identify patterns and characteristics
linked to both benign and malicious API calls,
whereas the testing set facilitates an impartial
evaluation of the model’s efficacy on
unfamiliar data. This method aids in reducing
overfitting and guarantees that the model can
generalize effectively to new instances of
malware and benign software, thereby
improving its robustness in practical
applications. Table 1 summarizes the
distribution of the dataset.

Table 1: Dataset Distribution.
Category Total Sequences Training (75%) Testing (25%)
Malicious API Calls 42,797 32,111 10,686
Benign API Calls 1,079 796 283
Total Sequences 43,876 32,907 10,969

Data Preprocessing
The collected datasets underwent
preprocessing to convert them into suitable
file formats that are compatible with the
programming language used for model
development. Additionally, a feature selection
procedure was applied to the dataset,
eliminating irrelevant attributes. This process
improved the accuracy of the classifiers and
optimized the processing time.

Proposed CNN-LSTMModel
After data preprocessing, the proposed model
is then designed, adopting the following
hyperparameters:
i. Input Shape: (X_train.shape[1], 1), where

X_train.shape[1] represents the number
of features, ensuring compatibility with
the CNN-LSTM architecture.

ii. Convolutional Layer: 64 filters with a
kernel size of 3, using ReLU activation.
This layer extracts meaningful patterns
from API sequences.
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iii. MaxPooling Layer: Pool size of 2 to
reduce spatial dimensions and
computational complexity.

iv. LSTM Layers:
a. First LSTM layer with 100 units,

returning sequences to retain temporal
dependencies.

b. Second LSTM layer with 100 units,
outputting a single vector for
classification.

v. Dropout Layers: A dropout rate of 0.5 is
applied after each LSTM layer to mitigate
overfitting.

vi. Dense Layer: A single neuron with a
sigmoid activation function for binary
classification (malware or benign).

vii. Optimizer: Adam, chosen for its adaptive
learning rate and efficient handling of
sparse gradients.

viii. Loss Function: Binary crossentropy,
suitable for binary classification tasks.

ix. Metrics: Accuracy is used as the primary
evaluation metric.

x. Batch Size: 32, balancing computational
efficiency and model convergence.

xi. Epochs: 100 with early stopping,
providing sufficient iterations for learning.

Model Training and Testing
After preprocessing, the dataset was divided
into two parts: the training set and the testing
set, with a ratio of 75:25. The training set
comprised 75% of the total dataset and was
used to fit and build the model. The testing set
served as an unbiased evaluation of the final
model, which was trained on the training
dataset. It provided the gold standard used to
assess the performance of the model. The
testing set was utilized only after the model
had been completely trained. The combined
architecture is shown in Figure 3.

Figure 3: CNN-LSTM Combined Model Architecture
Evaluation Metrics
The experimental comparison of classification
algorithms was done based on the
performance measures of classification
accuracy, precision, recall, and F1-score. The
model was evaluated based on the following
metrics:

Confusion Matrix
A classification matrix was generated and
represented by a confusion matrix, displaying
the actual and predicted classifications. A
confusion matrix is a tabular representation
utilized to characterize the efficacy of a
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classification model on a dataset with known
true values.
Following the generation of the confusion
matrix for each implemented algorithm, the
subsequent metric values—Accuracy,

Precision, Recall, and F1-Score—were
computed from the confusion matrix utilizing
the formulas provided below. Table 2 presents
the confusion matrix for a classifier with two
distinct classes (Strasak, 2017).

Table 2: Confusion Matrix for Two Classifiers [15].
Predicted
Positive

Predicted
Negative

Actual Positive TP FN
Actual Negative FP TN

Based on the values of the confusion matrix,
we can calculate the various evaluations like
precision, recall, F1-score and accuracy.

These metrics will provide us with insights
into the performance of the trained model and
its capability to successfully classify different
instances of our dataset.

1. Accuracy: the accuracy percentage is defined
as the ratio of correctly classified instances to
the total number of instances =

TP + TN
TP + TN + FP + FN

..........................................(1)
2. Precision: Precision is the proportion of true

positive predictions among the total retrieved
instances =

TP
TP +FP

..........................................................(2)
3. Recall: It is the proportion of positively

predicted instances relative to the total
instances = TP

TP + FN
.…................................(3)

4. F1-Score: This represents the measure of
predictive performance calculated from the
precision and recall of the model =
2 ∗ Precision ∗ Recall
Precision + Recall

..........................................(4)

RESULTS AND DISCUSSION
The experiments were designed and
conducted according to the methodology
outlined in Figure 1, utilizing the embedded
shallow CNN-LSTM architecture illustrated
in Figure 3. To ensure a comprehensive
evaluation, the experiments were divided into
two distinct phases, each focusing on different

aspects of the model's capabilities and
potential limitations.
First Experiment: Baseline Model without
Class Balancing
In the initial phase of the experiment, the
combination of CNN and LSTM was applied
without incorporating any data class
balancing techniques. This setup served as a
baseline to evaluate the raw performance of
the model when faced with imbalanced
datasets, a common challenge in malware
classification tasks. By omitting class
balancing methods, the experiment aimed to
assess how well the model could generalise
and classify malware samples under real-
world conditions where class distributions
may be skewed.
Second Experiment: Incorporating Class
Balancing Techniques with CNN
In the second phase, SMOTE was employed
to address the issue of class imbalance.
However, this experiment focused exclusively
on the CNN component of the architecture,
temporarily excluding the LSTM layer. The
goal was to isolate the impact of class
balancing techniques on CNN’s ability to
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classify malware effectively. This allowed for
a clearer understanding of whether the

improvements in performance were due to the
balancing methods or other factors.

CNN-LSTM with Imbalanced Class Model
Table 3: CNN-LSTM with Imbalance model classification report

Precision Recall F1-score Support
Benign 0.89 0.65 0.75 283
Malware 0.99 1.00 0.99 10686

Accuracy 0.99 10969
macro avg 0.94 0.83 0.87 10969
weighted avg 0.99 0.99 0.99 10969

The classification report results from the
shallow hybrid CNN-LSTM model, as shown
in Table 3, applied to an imbalanced dataset,
disclose significant performance metrics that
underscore the model’s strengths and
weaknesses in differentiating between benign
and malware samples. The assessment metrics
encompass precision, recall, F1-score, and
support, offering a thorough perspective on
the model’s efficacy.
Starting with the benign class, the model
exhibits a precision of 0.89, signifying that
roughly 89% of the instances categorized as
benign are accurately recognized. The recall
value for this class is 0.65, indicating that
only 65% of the actual benign instances are
accurately identified by the model. This
inconsistency indicates that although the
model exhibits considerable confidence in its
predictions for benign samples, it fails to
accurately identify all genuine benign cases,
possibly misclassifying some as malware. The
F1-score, which equilibrates precision and
recall, is 0.75 for the benign class, indicating
a moderate overall performance level.
Conversely, the model exhibits outstanding
performance for the malware category,
attaining a precision of 0.99 and a recall of
1.00. The elevated values suggest that nearly
all instances categorized as malware are
genuinely harmful, and almost all true

malware instances are accurately recognized.
The F1-score for the malware category is 0.99,
highlighting the model's efficacy in
identifying malicious samples. The dataset is
significantly imbalanced, comprising 10,686
malware samples and merely 283 benign
samples; thus, the model's capacity to attain
high accuracy for the majority class is
anticipated yet remains remarkable.
The model attains a remarkable accuracy of
0.99, indicating its robust performance
throughout the entire dataset.
Nevertheless, when evaluating the macro
average, which assigns equal importance to
both classes irrespective of their distribution,
the precision decreases to 0.94, the recall to
0.83, and the f1-score to 0.87. This suggests
that the model’s performance is biased
towards the majority class (malware) because
of the imbalance, resulting in a diminished
capacity to manage the minority class
(benign).
The weighted average, reflecting class
distribution, closely corresponds with the
overall accuracy, demonstrating precision,
recall, and F1-score all at 0.99.
This further underscores the predominance of
the majority class in shaping the overall
performance metrics. The high accuracy
indicates the model's overall effectiveness, yet
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the performance disparity between the two
classes underscores the difficulties associated
with imbalanced datasets.
In conclusion, the shallow hybrid CNN-
LSTM model demonstrates exceptional
efficacy in malware identification, especially
within a dataset predominantly composed of
malware instances. Nonetheless, its capacity
to identify benign samples is less reliable,
probably owing to the class imbalance. These
findings highlight the necessity of rectifying
class imbalance in subsequent efforts to
enhance the model’s accuracy regarding
minority classes. Moreover, although the
model shows considerable promise for
practical applications in cybersecurity,
additional improvements are required to
guarantee efficient and effective classification
across all categories.

Figure 4: Dataset Class Distribution Before
Balancing.

Figure 5: Dataset Class Distribution After
Balancing.

Shallow Hybrid CNN – LSTM with
Balanced Class Model
The dataset analysis revealed a significant
class imbalance because the number of
samples varied greatly between classes. To
resolve this problem, SMOTE is adopted.
The minority class representation was
expanded within the dataset by using SMOTE
to create synthetic samples. The technique
improved class distribution equity and
minimized the model’s majority class bias.
Figure 4 presents the original class
distribution, which demonstrates the dataset’s
imbalance, while Figure 5 illustrates the class
distribution after SMOTE was applied and
demonstrates how it achieved a more
balanced class representation.The figures
demonstrate how SMOTE transformed the
dataset by addressing class imbalance and
creating an equitable dataset for analysis and
successful model training.

Table 4: Hybrid Shallow CNN-LSTM Model Classification Report with Balanced classes
Classes Precision Recall F1-score Support
0 1 0.99 0.99 10722
1 0.99 1 0.99 10677
Accuracy 0.99
Macro Avg 0.99 0.99 0.99 21399
Weighted Avg 0.99 0.99 0.99 21399
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The classification report obtained from the
hybrid shallow CNN-LSTM model, evaluated
on the balanced dataset with SMOTE shows
outstanding performance across all principal
metrics. The model was evaluated on a dataset
with balanced representation of two classes (0
and 1), guaranteeing that the results
accurately assess the model’s ability to
classify both majority and minority classes.
In class 0, denoting a specific category of
instances (e.g., benign or non-malware), the
model attains a precision of 1.00, signifying
that every instance designated as class 0 is
accurately recognized. A recall value of 0.99
indicates that the model accurately identifies
99% of all true instances of this class. The
elevated F1-score of 0.99 further shows the
model’s robust performance between
precision and recall for class 0.
For class 1 (e.g., malware), the model
demonstrates a precision of 0.99, indicating
that almost all instances categorized as class 1
are true positives. The model attains a recall
of 1.00 accurately identifying all true

instances of class 1, thereby achieving perfect
sensitivity. The F1-score of 0.99 highlights
the model’s strong efficiency in managing this
class.
The model’s overall accuracy is reported at
0.99 indicating a high degree of correctness
throughout the dataset. The remarkable
accuracy is further supported by the macro
average and weighted average metrics, which
both attain scores of 0.99 for precision, recall,
and F1-score. These averages offer a
comprehensive perspective on the model’s
performance, affirming its consistent accuracy
in classifying both classes with equal
proficiency.
Comparison of Imbalanced Results with
Balanced Data Results
Table 5 contains a summary of experimental
results that evaluate CNN-LSTM model
performance across both imbalanced and
balanced datasets. The evaluation comparison
highlights how class balancing methods affect
critical performance metrics, including
accuracy, precision, recall, and F1-score.

Table 5: Comparison of the Proposed Model with and without Balanced Dataset.
Models Accuracy Precision Recall F1-Score
CNN-LSTM
(Imbalance)

99.22 0.94 0.83 0.87

CNN-LSTM (Balance) 99.44 0.99 0.99 0.99

The CNN-LSTM model assessed on the
imbalanced dataset attains an accuracy of
99.22%, indicating robust overall
performance. Nonetheless, its precision, recall,
and F1-score indicate a significant imbalance
in its capacity to manage the minority class.
Precision is 0.94, recall is 0.83, yielding an
F1-score of 0.87. The values suggest that the
model has difficulty accurately identifying all
instances of the minority class because of the
inherent dataset imbalance.

The CNN-LSTM model assessed on the
balanced dataset demonstrates markedly
enhanced performance across all metrics.
Balancing the dataset enables the
classification model to achieve a high
accuracy rate of 99.44%. Precision and recall
reach almost perfect levels at 0.99 which
produces an F1-score of 0.99.
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Evaluation of the developed model's
performance in comparison to existing
models
Table 6 shows the comparison between the
developed CNN-LSTM model and existing

works within malware classification. The
study presents an extensive assessment of the
model’s capabilities by comparing its results
with those from previous researchers.

Table 6: Comparison of Proposed CNN-LSTM Model with Existing Models
Author Method Accuracy
Akarsh et al. (2019a) CNN-LSTM 96.68%
Akarsh et al. (2019b) 1D CNN-LSTM 95.5%
Lu et al. (2020) CNN-LSTM 94%
Di Troia et al. (2021) LSTM and CNN 81%
Karat et al. (2024) CNN-LSTM 96%
Proposed CNN-LSTM with SMOTE

CNN-LSTM
99.44%
99.22%

The study by (Di Troia et al., 2021) applied
LSTM and CNN methods to reach 81%
accuracy. This method shows deep learning
techniques have potential for malware
classification but performs worse than newer
methods. Similarly, (Lu et al., 2020) achieved
94% accuracy using a combined CNN-LSTM
model. The outcomes demonstrate substantial
advancement in using hybrid models to
improve classification accuracy.
Karat et al. (2024) developed a CNN-LSTM
hybrid model for malware detection,
achieving an accuracy of 96%. Furthermore,
the model achieved 0.95 precision, a recall
value of 0.95, and an F1-score of 0.95. This
method shows deep learning techniques have
potential for malware classification.
The state-of-the-art is pushed further by the
developed CNN-LSTM model which includes
class balancing techniques. The model
reaches 99.44% accuracy when applied to
balanced datasets, which demonstrates its
effectiveness in managing both majority and
minority classes. The model exhibits
remarkable adaptability to different data
distributions by sustaining a high accuracy

rate of 99.22% even when tested against an
imbalanced dataset.
The performance assessment shows that our
developed model achieves better accuracy
than existing methods. Class balancing
techniques play a crucial role in enhancing
performance, which makes this approach a
viable solution for accurate malware detection.
The findings demonstrate how this model can
improve malware detection while effectively
dealing with imbalanced datasets. The model
represents an important breakthrough in
cybersecurity because it surpasses earlier
research achievements.
Summary
This work focuses on enhancing malware
attack classification using a hybrid shallow
convolutional neural network (CNN)
embedded with long short-term memory
(LSTM). The study addresses the challenge of
class imbalance in malware datasets by
comparing the performance of the CNN-
LSTM model on both imbalanced and
balanced datasets. A balancing technique i.e.
SMOTE was employed to balance the dataset,
significantly improving the model's ability to
classify minority classes.
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Experimental results demonstrate that the
CNN-LSTM model achieves an accuracy of
99.44% on balanced data and 99.22% on
imbalanced data, outperforming existing
models in terms of precision, recall, and F1-
score. This research highlights the importance
of addressing class imbalance and showcases
the potential of hybrid deep learning
architectures for advancing malware detection
and classification in cybersecurity.

CONCLUSION
This study successfully demonstrated the
effectiveness of a hybrid shallow CNN-LSTM
model in enhancing malware attack
classification by addressing the challenge of
class imbalance by adopting SMOTE. The
model achieves superior performance
compared to existing approaches. The results
show that the CNN-LSTM model attains an
accuracy of 99.44% on balanced datasets and
maintains a high accuracy of 99.22% even on
imbalanced datasets, highlighting its
robustness and adaptability.
The comprehensive evaluation using metrics
such as precision, recall, and F1-score, further
validates the model’s ability to accurately
classify both majority and minority classes.
These findings underscore the importance of
balancing datasets in improving the reliability
of machine learning models for cybersecurity
applications.
While the proposed model demonstrates
significant advancements in malware
detection, there is still room for improvement,
particularly in reducing false positives and
false negatives. Future work could explore
more advanced data augmentation techniques,
feature engineering methods, or ensemble
approaches to further enhance performance.
Additionally, applying the model to larger and
more diverse datasets could provide deeper
insights into its scalability and generalisation
capabilities.
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