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ABSTRACT

This study presents the Alternating Direction Method of multipliers (ADMM) for solving
linear programming problem (LPP) which is also known as proximal point algorithm. The
ADMM was deployed because of its strong convergence properties of the method of
multipliers, the decomposability property of dual ascent and the potential to solve large- scale
structured optimization problems. The update formulas for the LPP were derived from the
associated augmented Lagrangian with the primal and dual residuals also derived for the
convergence of the algorithm. The Game theory was re-structured into a LPP amenable to the
ADMM with a derived matrix operator that is invertible to guarantee its convergence.
Numerical examples were simulated to ascertain the performance of the method in terms of
speed and accuracy.
AMS subject classifications: 49, 65, 90
Keywords: ADMM, primal and dual convergences, Accelerator-variant,

INTRODUCTION

Another line of research has focused on
enhancing the performance and
convergence of ADMM for linear
optimization problems. For example, Qin et
al. (2017) proposed a new primal-dual
method for large-scale linear programming
with linear inequality constraints. The
study demonstrated that the ADMM can
achieve faster convergence and better
scalability compared to the penalty
methods particularly for large-scale linear
optimization problems. Furthermore,
several studies have investigated the
application of ADMM to specific classes of
linear optimization problems. For instance,
Li et al. (2019) proposed an ADMM
algorithm for solving linear programs with
box constraints. The authors developed a
specialized ADMM scheme that exploits
the structure of box constraints to achieve
faster convergence and better scalability.
The study demonstrated the effectiveness
of the proposed algorithm on various
practical applications, such as image
reconstruction and compressed sensing.

Famaey et. al, (2014) focused on the
application of ADMM to the LASSO
(Least Absolute Shrinkage and Selection
Operator) problem. It introduces an
accelerated version of ADMM that
improves the convergence speed, and
provides convergence analysis and
experimental results for both centralized
and distributed LASSO problems. Yuan
and Wang (2017) provided an accelerated
ADMM for linear and convex quadratic
network utility maximization and then
proposed an accelerated version of ADMM
for solving network utility maximization
problems in signal processing. It explores
the convergence properties and
computational efficiency of the accelerated
ADMM, and provides numerical
experiments to demonstrate its
performance. Patrascu and Rosu (2019)
proposed an ADMM-based approach for
solving linear programing problems with
both equality and inequality constraints. It
discusses the convergence properties and
computational efficiency of the algorithm,
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and provides numerical experiments to
demonstrate its effectiveness. Guo et.al.,
(2019) derived an adaptive Nesterov-type
accelerated version of ADMM for solving
linearly constrained convex optimization
problems. It discusses the theoretical
properties and numerical performance of
the algorithm, and provides comparative
experiments with other algorithms. Hong
and Sun (2016) discussed the
implementation of primal-dual methods,
including ADMM, for solving large-scale
linear programming problems. It provides a
detailed description of the algorithmic
framework for ADMM and discussed the
practical issues that arose in implementing
the method. Yang and Zhang (2017) used
the alternating direction method for solving
semidefinite programming problems with
linear constraints. It shows that the
proposed algorithm is equivalent to a

variant of ADMM and provides
convergence analysis and numerical
experiments.
In the work of Dawodu (2021) on Optimal
control problems with multiple delay, the
ADMM was accelerated with a parameter
factor in the sense of Nesterov (1983). The
method presented in the study was used to
find a numerical solution to the Optimal
Control model constrained by Partial
Differential Equation. A one-dimensional
heat equation optimization problem driven
by a partial differential equation was
solved using the ADMM tool. The rate of
convergence of the model for increasing
iterations was determined by deriving the
primal-dual residuals for the effectiveness
and level of accuracy of the problem using
the algorithm.

MATERIALS AND METHODS
Statement of Problem
Considering the generalized linear programming problem (LPP)

min
�,�

( �=1
� � ���� + �=1

� � ����) (1)

s. t. �=1
� � ����� + �=1

� � ����� ≤ ��, � = 1,2, …, �; � = 1,2, …, � (2) where
� ∈ ��, � ∈ ��, ��, ��, ���, ��� ∈ �+.

Expanding Eqns. (1) and (2) yields the compact equation written below as

min(��� + ���) �. � �� + �� ≤ �, (3)

where,
� = �1, �2, ⋯��

� ∈ ��,
� = �1, �2⋯��

� ∈ ��,
� = �1, �2, ⋯, ��

� ∈ ��,
� = �1, �2, ⋯, ��

� ∈ ��,
� = �1, �2, ⋯, ��

� ∈ ��,
� ∈ ��×� and � ∈ ��×� with entries of �
and � describe as ��� ∈ � and ��� ∈ �
respectively for � = 1,2. . . �; � = 1, . . � .
The model above is a linear programming
problem amenable to the ADDM since the

objective function is separable in � and �,
closed and convex; while the constraint is
linear and coupled in both variables in �
and �. The compact form of eqns. (1) and
(2) expressed in eqns. (3) was subjected to
the ADMM before imposing the karush-
Khurn-Tucker(KKT) optimality condition.
It was later accelerated using the Gauss-
Seidel accelerator-variant to speed up the
rate of convergence of the ADMM
algorithm.
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Implementation of ADMM on LPP
Given the optimization problem below

min (��� + ���) �. � �� + �� ≤ �, (4)

then the associated augmented Lagrangian of eqn. (4) is
min
�,�

�� �, �, �, � = ��� + ��� + �� �� + �� − � + � +
�
2 ∥ �� + �� − � + �∥2

2 + �+ � , (5)

where � ≥ 0, � is the Lagrange multiplier,
� ≥ 0 is the penalty parameters, ∥ . ∥2 is
the euclidean (spectral) norms of a vector
(matrix) arguments, � is the introduced
slack vector and �+is the indicator function
for the non-negative orthants defined as

�+ � =
0 ��� � ≥ 0

∞ ��ℎ������

The Lagrangian formulation is derived
thus:

��� + ��� + ��(�� + �� − � + � + �) + �
2

∥ �� + �� − � + � + �∥2
2 (6)

compactly written as

� + ��� + �
2

∥ �∥2
2 = � + �

2
∥ � + �∥2

2 - �
2

��� s ≥ 0,

where � = ��� + ���, � = �� + �� − � + � and upon expansion and collections of like-
terms yields

� + ��� + �
2

��� = � + �
2

��� + ����, (7)

��� = ���� (8)

� = ��

�
, (9)

where �
2

��� is a constant. The scale
augmented Lagrangian function is now
min�� �, �, �, � = ��� + ��� + �

2
∥

�� + �� − � + � + �∥2
2 ; � ≥ 0, (10)

where � = �
�
is the scaled dual variable.

The following Karush-Khun-Tucker(KKT)
optimality conditions will then be imposed
on the scaled augmented lagrangian for the
derivation of the ADMM update formulas.
0 = ∇���(�, ��, ��, ��)

= ∇���(��+1, �, ��, ��) = ∇���

= (��+1, ��+1, �, ��), (11)
and
��+1 = �� + ���+1 + ���+1 − � +
��+1 (12)
for � = �

�
. Applying the optimality

conditions above to the separable and
convex operators of the objective function
and linear constraints given by the
sequential minimization of �, �, � and � in
the Lagrangian function in eqn. (12) yields
the update formulas below.

Update on-�:
0 = ∇���(�, ��, ��, ��)
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= ���

��
[��� + ���� + �

2
∥ �� + ��� −

� + �� + ��∥2
2] (13)

= � + ���(�� + ��� − � + �� + ��). (14)
This implies that
��+1 =− (���)−1[�−1� + ��(��� − � +
�� + ��)] (15)

Update on-�:

Considering the update of the � vector,we
then set
0 = ∇��� ��+1, �, ��, ��

= ���

��
[����+1 + ��� + �

2
∥ ���+1 +

�� − � + �� + ��∥2
2] (16)

= � + ���(���+1 + �� − � + �� + ��). (17)
This implies that
��+1 =− (���)−1[�−1� + ��(���+1 −
� + �� + ��). (18)
Introducing the acceleration or relaxation
factor (parameter) � ∈ [1.8, 2] in the
sense of Nesterov (1983) in the �-update
formula by replacing
���+1 by ℎ�+1 = ���+1 + (1 − �)(��� −
� + ��) in eqn. (18) yields
��+1 =− (���)−1[�−1� + ��(ℎ�+1 −
� + �� + ��). (19)

Update on-�:

Considering the update of the slack

variable � leads to
0 = ∇��� ��+1, ��+1, �, ��

= ���

��
[����+1 + ����+1 + �

2
∥ ���+1 +

���+1 − � + � + ��∥2
2], (20)

0 = (���+1 + ���+1 − � + � + ��).
This implies that
��+1 =− (���+1 + ���+1 − � + ��); � ≥ 0 ( 21) Upon introduction of the accelerator -variant and the positivity consideration, eqn. (21) becomes
��+1 = max{0, − (ℎ�+1 + ���+1 − � +
��)}; Component wise (22)

Update on-�:

Updating the dual variable � requires that
��+1 = �� + (���+1 + ���+1 − � +
��+1). (23)
Replacing ���+1 with ℎ�+1 in eqn. (23)
yields
��+1 = �� + (ℎ�+1 + ���+1 − � + ��+1). (24)
Summarily, the over-relaxed ADMM for
the original problem is given as;

��+1 =− (���)−1[�−1� + ��(��� − � + �� + ��),
��+1 =− (���)−1[�−1� + ��(ℎ�+1 − � + �� + ��),
��+1 = max 0, − ℎ�+1 + ���+1 − � + �� ,
��+1 = �� + ℎ�+1 + ���+1 − � + ��+1 . (25)

Given the starting points ( �0, �0 ) and
initial starting points for the adjoint and
slack variables (�0, �0), the ADMM solves
the problem (4) by the update schemes in
eqn. (25) above.

Convergence analysis and
Profile of the ADMM on LPP

In the development of the ADMM for the
multiobjective linear programming
problems, the convergence of the ADMM
to an optimal solution is guaranteed
provided the solution exists and the matrix
operators are well-posed (invertible,
consistent and stable). However, the limit
of the proposed ADMM iterates usually
satisfy the set of first-order optimality
condition by producing a certificate of
either primal or dual feasibility or both. In
the derivation of the convergence residues,

we assumed that the multi-objective
function of the problem is represented as
�� = �(��) + �(��) as ��ℎ iteration (cycle)
approaches the optimal objective value

�∗( �. � �� ��� �∗) for large value of

� (�. � � ��� ∞) known as the optimal
objective value where the dual residual
generated by each iteration converges to
zero. In same light, we assumed
�� = ��� + ��� − � , being the primal
residual of the constraint at each iteration,
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approaches zero as the algorithm approaches optimality.

Theorem 1
Suppose pk is the objective function value of the convex and sub-differentiable functions f and
g such that it converges to the optimal objective value p* for the given constraints Ax + Bu –
E ≤ 0 and multiplier λ, then there exists dual residual ||��+1|| = ��� � ��+1 − �� +
��+1−�� that converges to zero for a given penalty parameter ρ.

Proof:
Given the objective function �� = �(��) + �(��) and the linear inequality constraint �� +
�� ≤ �, the associated Lagrangian with slack� is stated thus
��(�, �, �, �) = �(�) + �(�) + ��(�� + �� − � + �) +

�
2

∥ �� + �� − � + �∥2
2.

Applying the optimality conditions (KKT), we have
��(�) + ���� + �(���� + ���� − ��� + ���) = 0
��(��+1) + ���� + ���(���+1 + ��� − � + ��) = 0,
��(��+1) + ���� + ���(���+1 + ���+1 − � + ��+1� � ������� ������

��+1

),

−������+1 − �����+1 + ������ + ����� = 0,
where the primal residual is expressed as
��+1 = (���+1 + ���+1 − � + ��+1). (26)
Therefore,

�� ��+1 + ���� + �����+1 − ���� ��+1 − �� − ��� ��+1 − �� = 0, (27)

��� � ��+1 − �� + ��+1 − �� = �� ��+1 +

�� �� + ���+1� � ��� ��
��+1

, (28)

since at the ADMM, the update ��(��+1) + ����+1 ��� 0, then its dual residual

||��+1|| = ����[(��+1 − ��) + (��+1 − ��)] ��� 0. (29)

which completes the proof. Q.E.D

The convergence of the dual and primal
feasibility to zero in the equation above is
a clear indication that the algorithm has
super linear convergence. However, the
LPP in eqn. (3) can be re-structured thus:

min ��� �. � �� ≤ � (30)
where � = [� �]� ∈ ��+� , � =

[�� ��] ∈ �(�+�)×1 , � = [� �] ∈
�(�)×(�+�) and � ∈ ��×1.
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Theorem 2

Given a linear programming problem (LPP)

min 1
2

��� ���ℎ �ℎ�� �� ≤ � (31)
where � ∈ � �+� ×1, � ∈ � �+� ×1. � ∈
��×(�+�) and � ∈ ��×1 then the
optimal stepsize for the LPP is
�∗ = [ �min(��−1��)�max(��−1��)]−1 (32)
and the convergence factor.
�∗ =
�max(��−1��)− �min(��−1��)�max(��−1��)
�max(��−1��)+ �min(��−1��)�max(��−1��)

(33)

for � ∈ 0,2 , �min ��−1�� and
�max ��−1�� are minimum and
maximum eigenvalue of ��−1��

respectively.
See proof in Ghadimi et. al. (2014).

The result of the optimal parameter
selection of the LPP above is also stated
and proven in Ghadimi (2014) where � ∈
��×� and � ∈ �(�+1)×(�+1)

Stopping criteria
The reasonable termination (stopping)
criteria for the ADMM are to select the
primal and dual residuals, so small, such
that ∥ ��+1∥2 ≤ ����� and
∥ ��+1∥2 ≤ ����� , where ����� > 0 and
����� > 0 are the tolerances of the primal
and dual feasibility conditions respectively
for the convergences of the ADMM.
However,the choices of our tolerances
depend on both the relative and absolute
criteria on account that the �2 norms are in
�� or �� . In Boyd et. al (2011), the

computation of the relative tolerance,
absolute tolerance, primal and dual
residuals for the ADMM on the primal
were adopted and given as ���� =
10−3, ���� = 10−4, ����� = ����� +
����max{ ∥ ���+1∥2, ∥ ��+1∥2} and ����� =

����� respectively. The dual is then
computed as: ����� = ����� +
����max{ ∥ ���+1∥2, ∥ ��+1∥2} and ����� =

����� , � ∈ �(�−1)×(�+1) and � ∈
�(�−1)×1.

ADMM Algorithm for LPP

Step 1 :(Initialization)
Input Initial values ��

0, ��
0, ��

0, ����� > 0 , ����� > 0 �, �, �
Step 2: (Update formulas) � = 0,1, ⋯, �

��+1 =− (���)−1[�−1� + ��(��� − � + �� + ��)] eqn. (15)
��+1 =− (���)−1[�−1� + ��(ℎ�+1 − � + �� + ��) eqn. (19)
��+1 = �� + ���+1 + ���+1 − � + ��+1 eqn. (23)

Step 3: (Compute primal and dual residuals) � = 1,2⋯, �
��+1 = (���+1 + ���+1 − � + ��+1) eqn. (26)
��+1 = ���� ��+1 − �� + ��+1 − �� eqn. (29)

Step 4: (Compute primal and dual Tolerance values) � = 1,2⋯, �
����� = ����� + ����max{ ∥ ���+1∥2, ∥ ���+1∥2, ∥ ��+1∥2}

����� = �����

Step 5:(Termination criteria)
Stop if ||��+1|| ≤ ����� ��� | ��+1 | ≤ �����

Output �∗ = ��+1, �∗ = ��+1, and
End function otherwise repeat step 2 for � = � + 1
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ADMM Implementation on
Game theory

Game theory bears a strong relationship
with linear programming since any two-
person zero sum game can be expressed as
a linear programme. In Dantzig (1963), it
was stated that J. Von-Neumann in 1947
introduced the Simplex method in solving
games by expressing it with the concept of
duality in linear programming.

A \ B �1 �1 . . . �N
�1 �11 �11 . . . �11
�2 �21 �22 . . . �2N
. . .
�M �M1 �M2 . . . �MN

In the payoff matrix (table) above, player
A has � strategies with �1, �2⋯�� as the
optimal probability and player B has �
strategies with �1, �2, �3⋯�� as the
optimal strategies where 0 ≤ �� �� ≤ 1 ,
∀�, �.

LPP formulation for the Primal
The linear programming models for
determining the optimal strategies for the
primal can be solved by the maximum LPP
model :-

max
��

[min
�=1

�

� ��1��,
�=1

�

� ��2��, ⋯,
�=1

�

� ��N��  

�1 + �2 + �3 + ⋯ + �� = 1 (34)

�� ≥ 0, � = 1,2, ⋯�

Let

v = min
�=1

�

� ��1��,
�=1

�

� ��2��, ⋯,
�=1

�

� ��N��

then it implies that any element in the
bracket satisfies the equation

v− �=1
� � ��j�� ≤ 0 , � =

0,1, . . , �. (35)

Therefore, the linear programming
problem of the primal can be expressed as

max � = � (36)

s.tv− �=1
� � ��j�� ≤ 0 , � = 0,1, . , �. (37)

�=1
� � �� = 1 (38)

�� ≥ 0, ∀� = 0,1, . . , �. (39)
� ������������ , (40)

where � is the value of game and it is
unrestricted in signs. Expanding the
objective function in eqn. (36) yields ���
and upon expansion of constraint eqns. (37)
to (40) for various values of � and � yields
the constructed matrix operator below:

1 | − �11 �21 ⋯ − ��1
1 | − �12 �22 ⋯ − ��2
⋮ | ⋮ ⋮ ⋮ ⋮
1 | − �1� �2� ⋯ − ���
0 | 1 1 ⋯ 1

�
�1
�2
⋮
��

≤

0
0
⋮
⋮
1

(41)

|
|

ℎ� | − ��

|
0 | ���

�
�1
�2
⋮
��

+

�1
�2
⋮
��
0

=

0
0
⋮
⋮
1

, (42)

Compactly written as
�� + � = � , (43)



DOI: 10.56892/bima.v9i1A.1258

Bima Journal of Science and Technology, Vol. 9(1A) Mar, 2025 ISSN: 2536-6041

330

where � ∈ �(�+1)×(�+1) is invertible,
� = (�, �1, �2, ⋯��) ∈ �(�+1), � =
(�1, �2, ⋯��, 0) ∈ �(�+1), � =
(0,0, ⋯, 1) ∈ �(�+1) , ℎ� = (1,1, ⋯, 1) ∈
��, �� = (1,1, ⋯, 1) ∈ ��, � ∈ ��×�

� = (1 0��) ∈ �(�+1) , and � is the payoff
matrix. The game can now be presented in
the form amenable to ADMM as expressed
below:

min � = ��� (44)
�. t �� + � =∝ ≥ 0, �� ≥ 0, ∀�� ∈ �
, ∀�� ∈ �; � = 1,2, ⋯, � (45)
� ������������

LPP formulation for the Dual

Similarly, the linear programming model
for the dual with optimal strategies can be
solved by the minimum problem by the
duality principle.
min � = � (46)

�. � � −
�=1

�

� ����� ≥ 0,

� = 1,2,3, ⋯, � (47)

�=1
� � �� = 1 (48)

�� ≥ 0, ∀� = 1,2,3⋯, �; (49)
� ������������ (50)
where � (the game value) is unrestricted in
signs and expressed as
� = max { �=1

� � �1���, ⋯, �=1
� � �����}

(51)

,wherefore any element in the bracket is
such that � − �=1

� � �����, ≥ 0, ��� � =
1,2,3⋯, �.
Similarly, expanding the objective
function in eqn. (46) yields ��� and upon
expansion of constraint eqns. (47) to (50)
for various values of � and � yields the
matrix formulation below for the player B
optimal strategies.
1 | − �11 �12 ⋯ − �1�
1 | − �21 �22 ⋯ − �2�
⋮ | ⋮ ⋮ ⋮ ⋮
1 | − ��1 ��2 ⋯ − ���
0 | 1 1 ⋯ 1

�
�1
�2
⋮
��

≥

0
0
⋮
⋮
1
(52)

|
|

�� | −�
|

0 | ℎ��

�
�1
�2
⋮
��

−

��1
��2
⋮
���
0

=

0
0
⋮
⋮
1

, (53)

compactly written as
�� − � = ��, (54)

where � ∈ �(�+1)×(�+1) is invertible, � =
= (�, �1, �2, ⋯��) ∈ �(�+1), � =
(��1, ��2, ⋯, ���, 0) ∈ �(�+1), � = (1 0�) ∈
�(�+1), 0� = (0,0, ⋯, 0) ∈ �� and �� =
(0,0, ⋯, 1) ∈ ��+1. The game can now be
presented in the form amenable to ADMM
as expressed below:

max
�

� = ���

�. � �� − � = ��
�� ≥ 0, �� ≥ 0, ∀�� ∈ �, ∀�� ∈ �; � =

1,2,3 (55)
� ������������
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ADMM formulation

For the Primal linear program, the
Lagrangian is formulated thus

��(�, �, �) = ��� + �
2

∥ �� + � − � +

�∥2
2, � ≥ 0, � ≥ 0, � = �

�
. (56)

Applying the necessary conditions in eqn.
(11) to (56) and replacing ���+1 with
ℎ�+1 = ����+1 + (1 − �)��+1 yields the
following accelerated update formulas for

��+1 =
max{0, − (���)−1(�−1� − ��(�� + �� -
�)

��+1 =
max{0, − (ℎ�+1 + �� − �)}

��+1 = �� + (ℎ�+1 + ��+1 − �) (57)

��+1 = �� + (ℎ�+1 + ��+1 − �) .

For dual linear program, the Lagrangian is
formulated thus:
��(�, �, �) = ��� + �

2
∥ �� − � − �� +

�∥2
2, � ≥ 0, � ≥ 0, � = �

�
. (58)

and the corresponding accelerated update
formulas are given as;
��+1 =
max{0, − (���)−1(�−1� − ��(�� + �� −
��)}

��+1 = max{0, (ℎ�+1 − �� + ��)}
��+1 = �� + (ℎ�+1 − ��+1 − ��) (59)
� ≥ 0, � ≥ 0, ∀�� ∈ �, ∀��� ∈ �; � = 1,2, ⋯, �,

where ���+1 is being replaced by ℎ�+1 =
����+1 + (1 − �)��+1.

Primal Convergence Analyses
For the Primal program, let �(��+1) =
��+1 such that ��+1 � �∗ at optimum
point ��+1. Then
��(��+1) + ���� + ���(���+1 + �� − �)

= 0

��(��+1) + ���� +
���(���+1 + ��+1 − �� � ����� ����

��+1

)

+����� − �����+1 = 0

��(��+1) + ��[�� + ���+1� � ��� ��
��+1

] − ���(��+1

− ��) = 0
���(��+1 − ��) = ��(��+1) + ����+1,

where ��+1 = ���+1 + ��+1 − � is the
primal residual. If ��+1 = ���+1 + ��+1 −
� ≤ ����� then at convergence, the dual
residual (iterates) at each cycle becomes
��+1 = ���(��+1 − ��) = ��(��+1) +
����+1 ≤ ����� (60)

Similarly, for the dual program, the primal
residual is ���+1 = ���+1 − ��+1 − �� and
for ��(��+1) + ����+1 � 0 the dual
residual at optimum point ��+1 then
becomes
���+1 = ���(��+1 − ��) = ��(��+1) +
����+1 ≤ ����� (61)

For further analysis, from Boyd et.al
(2011),
∥ ��+1 ∥= ����� ≤ ����� +∥ ���+1 +
��+1 ∥
≤ ����� + ����max{ ∥ ���+1 ∥ , ∥ ��+1

∥ }

≤ ����� + ����max{ ∥ ���+1 ∥ , ∥ ��+1 ∥ } (62)
�ℎ��� ∥ ��+1 ∥= ����� ≤ ����� (63)
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ADMM Algorithm on the Primal LPP for Game Theory

ADMM Algorithm for LPP

Step 1 :(Initialization)
Input Initial values ��

0, ��
0, ��

0, ����� > 0 , ����� > 0 �, �, �
Step 2: (Update formulas) � = 0,1, ⋯, �

��+1 = max 0, − (���)−1 �−1�� + �� + �� eqn. (15)
ℎ�+1 = ����+1 + (1 − �)�� eqn. (19)
��+1 = max 0, − (�−1� + ℎ�+1 + ��) eqn. (23)

��+1 = �� + (ℎ�+1 + ��+1)
Step 3: (Compute primal and dual residuals) � = 1,2⋯, �

��+1 = ���+1 + ��+1 eqn. (26)
��+1 = ��� ��+1 − �� eqn. (29)

Step 4: (Compute primal and dual Tolerance values) � = 1,2⋯, �
����� = ����� + ����max{ ∥ ���+1∥2, ∥ ���+1∥2, ∥ ��+1∥2}

����� = �����

Step 5:(Termination criteria)
Stop if | ��+1 | ≤ ����� ��� | ��+1 | ≤ �����

Output �∗ = ��+1, �∗ = ��+1, and
End function otherwise repeat step 2 for � = � + 1

Numerical Examples
Example 1:

min3� + 2�
�. �2 − � ≤ 6
� + 2� ≤ 1
� � ≥ 0.
The above problem can be re-structured

into matrix form below:
min��� �. � �� = �; � ≥ 0, (64)
where � = (� �), � = (3 2)�,
b = (6 1)�, ��� � = (2 −1

1 2
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Figure 1: Trajectories of the Primal
(Dual) variables (||x||, ||u||) and the
Obj. function (||z||).

Figure 2: Primal and Dual residues
towards convergence.

Figure 3: Primal and Dual Convergences
of the ADMM Algorithm as ||rk+1 − rk|| � 0
and ||dk+1 − dk|| � 0

Figure 4: Primal ||rk+1|| and Dual ||dk+1||
residues.
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Example 2:

Solve the following game by ADMM. The
value of the game, v, lies between -2 and 2.

� =
3 −1 −3
−2 4 −1
−5 −6 2

(65)

Player � mixes strategies �1 , �2 and �3
with probabilities �1 , �2 and �3
respectively with 0 ≤ �� ≤ 1 while Player
� mixes strategies �1 , �2 and �3 with
probabilities �1 , �2 and �3 respectively
with 0 ≤ �� ≤ 1. Player �’s linear (Primal)
program is stated as
max � = �
�. � � − 3�1 + 2�2 + 5�3 ≤ 0

� + �1 − 4�2 + 6�3 ≤ 0
� + 3�1 + �2 − 2�3 ≤ 0

�1 + �2 + �3 = 1
�1, �2, �3 ≥ 0
� ������������

The LPP formulation for the Primal
program is presented as

max ��� �. � �� + � = �; (66)
where � ≥ 0, � ≥ 0 and the constructed
matrix operator � and other coefficient
vectors are stated below.

� =

1 | −3 2 5
1 | 1 −4 6
1 | 3 1 −2
0 | 1 1 1

� =

�
�1
�2
�3

,

, � =

1
0
0
0

��� � =

0
0
0
1

.

Player �’s linear (Dual) program is stated
as
min � = �
�. �� − 3�1 + �2 + 3�3 ≥ 0
� − 2�1 − 4�2 + �3 ≥ 0
� + 5�1 + 6�2 − 2�3 ≥ 0
�1 + �2 + �3 = 1
�1, �2, �3 ≥ 0

� ������������
While the LPP formulation for the Dual
program is presented as

min ��� �. � �� − � = ��; (67)

where � ≥ 0, � ≥ 0, and the constructed
matrix operator � and other coefficient
vectors are stated below.

� =

1 | −3 1 3
1 | 2 −4 1
1 | 5 6 −2
0 | 1 1 1

, � =

�
�1
�2
�3

,

� =

�1
�2
�3
0

, � =

1
0
0
0

��� �� =

0
0
0
1

.

Applying the constructed ADMM
Algorithm above to the LPP in example 2
yields the following Primal and Dual
probabilities, residues and convergences
indicated in figures 5, 6, 7 and 8 below.

Figure 5: Probabilities for the mixed
strategies of Player A.

Figure 6: Probabilities for the mixed
strategies of Player B.
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Figure 7: Value of Game.

RESULTS AND DISCUSSION

The implementation of the ADMM on
example 1, of the general LPP, yields the
results � = 2.6832 and � = 2.5991 and
the objective value � = 8.2874 . The
primal and dual residuals approach
convergence at about 10 iterations. The
results for the primal program of the game
problem of example 2 are given �� �1 =
0.3945, �2 = 0.3119 and �3 = 0.2936
expressed in dashed, regular and dotted
lines in figure 5 above for strategies A1,
A2 and A3 respectively, after 3 iterations,
while �1 = 0.3211, �2 = 0.0826 and
�3 = 0.5963 are the results for the dual
program for strategies B1, B2 and B3
expressed in the dashed, regular and dotted
lines respectively in figure 6 above. The
value of the game is given as � = −
0.9083 and indicated in figure 7. The rate
of convergence of the accelerated ADMM,
after 3 iterations, is indicated in figure 8.

Figure 8: Primal Convergence
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CONCLUSION
In this research paper, we derived the
Proximal Point Algorithm (ADMM) for
the classical Linear Programming problem
(LPP) with application to the Games with
no saddle point. The algorithm was
implemented on both the primal and dual
of the LPP with the use of an accelerator
variant in the sense of Nesterov to speed
up the rate of convergence and its
performance. The rate of convergence of
the LPP, for the game theory, resulting
from the proximal point Algorithm
(ADMM) were analyzed and the results
achieved with modest accuracy in only a
few iterations. The Transportation model
can also be structured in a manner
amenable to the proximal point algorithm
provided the constructed matrix operator is
invertible.
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