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ABSTRACT 

Peristalsis is a form of fluid transport achieved with the aid of progressive, contraction-expansion 

wavelike movements along the walls of the fluid containing tract (channel/pipe/tube). It appears 

mostly in biological systems, such as in the ureter, in the intestines and oviducts in the human 

body. In the study, a particle-fluid suspension is treated as a two-phase fluid and considered to be 

flowing through a circular cylindrical flow tract, under the influence of a long wave peristaltic 

flow situation. Two sets of equations, for the fluid phase and the particulate phase, are taken. At 

the end when the volume fraction of the particulate phase q is made zero, the results did agree, to 

some extent with the case of a single-phase fluid. From this study therefore it implies that, as long 

as a Newtonian fluid is assumed, the fluid type may not adversely affect the results, hence may 

correspond to the single-phase fluid situation.  

Keywords: Contraction, Long wave, Fluid transport, Flow situation, Peristaltic 

INTRODUCTION 

Peristalsis is a form of fluid flow/transport 

mechanism achieved with the aid of a 

progressive contraction – expansion 

wavelike situation along the walls of the 

fluid-containing tract, in this case, cylindrical 

(tube-like/pipe). This mechanism is known to 

be one of the major fluid transport processes 

in many biological systems. It occurs as 

involuntary movements of the longitudinal 

and circular muscles, primarily in the 

digestive tract, but occasionally in other 

hollow tubes of the body, that occur in 

progressive wavelike contractions.  The 

waves can be short local reflexes, or long 

continuous contractions that travel the whole  

 

 

length of the organ, depending upon their 

location and what initiates their action.  In 

particular, peristaltic transport mechanism is 

involved in urine transport from kidney to 

bladder through the ureter and movement of 

chime in the gastro-intestinal tract. The 

peristalsis phenomenon can be represented 

diagrammatically as figure 1.  
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Fig. 1.1: Peristaltic flow process – 2-dimensional flow 

tract  

Figure 1: Peristaltic flow process – 2-dimensional flow 
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Li (1970), adopted a long wave 

approximation, based on the Zien and 

Ostrach, (1969) model, to analyze the 

peristaltic pumping of a Newtonian Fluid, in 

a circular cylindrical tube. Essentially, it is 

the application of the Zien and Ostrach, 

(1969) analysis to the axisymmetric case. The 

same assumptions that the length of the 

peristaltic wave is large compared with mean 

radius of the tube; and the frequency of the 

peristaltic wave is small as compared to the 

reciprocal of the characteristic time for the 

vorticity diffusion – thus making the 

Reynolds number small; are again adopted. 

The perturbation solutions techniques are 

also employed, with closed-form solutions, 

up to the second order, obtained; and criteria 

for backward flow discussed.  

Other important related studies on this topic 

of recent years include Srivastava and 

Srivastava, (1997); Mekheimer, (1998); 

Srivastava, (2002); Srivastava, (2007); and 

Medhavi et al. (2009). It is noteworthy that 

all these used a circular cylindrical model, 

while Muhammad, (2010), used the 

rectangular (channel) model. In this study 

however, only the zeroth order solutions will 

be presented as these “are more applicable to 

physical problems”- Muhammad and Sesay, 

(2010). This study aimed at analyzing the 

peristaltic transport of a particle-fluid 

suspension in the same methods as carried 

out by Li (1970) for a circular cylindrical 

tube. Whereas in the previous study, a single 

phase, incompressible Newtonian fluid was 

used, in this case, a particle-fluid suspension, 

considered as a Newtonian fluid, is used. The 

suspension is considered as a two-phase 

fluid, that is, the fluid phase and the particle 

phase. The same calculation processes will be 

followed, in each case, with the hope of 

getting parallel results as previously 

obtained.  

MATERIALS AND METHOD 

Problem Formulation  

A viscous incompressible Newtonian fluid, 

consisting of a fluid matter in which uniform 

rigid spherical particles are suspended, to 

form a two-phase fluid, is considered. The 

fluid is assumed to flow through a circular 

cylindrical tract (in form of a tube or pipe), 

with flexible walls, upon which symmetric, 

traveling transverse waves are imposed. The 

two dimensional set up of the model, is 

shown in figure 2.  

 

 

    

Definition of Parameters 

(i) Since a two-dimensional axi-

symmetrical circular cylindrical tube/pipe is 

being considered, a  cylindrical coordinate 

system ( ),R Z is chosen; with the Z-axis in 

the direction of wave  propagation, hence 

aligned with the centre line of the tract. The 

Center 

R, U 

λ 

Figure 2:   A Two-Dimensional Tube Under Peristalsis 

Z, V 

a 

b
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R-axis is in the radial  direction, normal to 

the mean position of the tract walls. 

(ii) U  and V  are the velocity 

components of the fluid phase in the R  and 

Z   directions respectively; while 
p

U  

and 
p

V  for the particulate phase. 

(iii) The actual density of the material 

constituting the fluid phase is denoted by 
f



, while  that of the particle phase is denoted by 

p
 . If the volume  fraction of the particle 

phase  is denoted by q , then the volume 

fraction of the fluid phase will be ( )1 q− . 

Hence the  corresponding effective 

densities will be 
p

q for the particle phase; 

and ( )1
f

q −  for  the fluid phase. 

(iv) The effective viscosity of the 

suspension is denoted by ( )
s

q . For this 

problem, an  empirical relation for the 

viscosity of the suspension is: 

 0( )
1

s
q

nq


 =

−
; Such that: ( )

1107
0 070exp 2 49 1 69n q exp q

T

 
=   + −  

 
. 

 Where T  is absolute temperature ( )0K , as presented by Charm and Kurland (1974).

 The expected drag coefficient will be 0

0 2

9
( )

2
F q

l


= ;  such that: 

 
( )
( )

1
2 2

2

4 3 8 3 3
( )

3 3

q q q
q

q


+ − +
 =

−
; 

0
  is the fluid viscosity; l  the radius of a particle.  

This relation represents the classical Stoke’s 

drag for small particle  Reynolds 

number, modified to account for the finite 

particulate fractional  volume, 

 through the function ( )q , as 

obtained by Tam (1969). 

Equations of Motion 

The peristaltic motion of the tract walls can 

be represented by: 

 

( ) ( )
2

, sinR Z T a b Z cT





 
= =  + − 

 

; such that a is the radius of the cylindrical 

tract (pipe or tube), b  is the amplitude,   is 

the wavelength, c  the wave speed. 

 For the motion of the suspension, two 

sets of equations, for the fluid phase and the 

particulate phase, are considered. The 

equations of motion, based on Drew (1979); 

Srivastava and Srivastava (1984), are as 

follows: 
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(a) For the Fluid phase:  

 (1 )
f

U U U
q U V

T R Z


   
− + + 

   
 

     

2 2

2 2 2

1
(1 ) (1 )

S

P U U U U
q q

R R R R R Z


    
= − − + − + − + 

    
( )0 p

qF U U+ −  ...(1) 

 

(1 )
f

V V V
q U V

T R Z


   
− + + 

   
 

     

2 2

2 2 2

1
(1 ) (1 )

S

P V V V V
q q

Z R R R R Z


    
= − − + − + − + 

    
( )0 p

qF V V+ −    ...(2) 

 Continuity Equation: ( )1 0
U U V

q
R R Z

  
− + + = 

  
.        ...(3) 

(b) For the Particle phase: 

 

p p p

p p p

U U U
q U V

T R Z


   
+ + 

   
 

P
q

R


= −


( )0 p

qF U U+ −                           ...(4) 

 

p p p

p p p

V V V
q U V

T R Z


   
+ + 

     

P
q

Z


= −


( )0 p

qF V V+ −                               ...(5) 

 Continuity Equation: 0
p p p

U U V
q

R R Z

  
+ + = 

  
.                                              ...(6) 

  

The boundary conditions that must be 

satisfied by the fluid phase on the walls are 

the no-slip and impermeability conditions. 

These can be represented by: 

         0U =  on ( ),R Z T= ; and ( )
2 2

sin
ca

V Z cT
 

 
=  −  on ( ),R Z T= .     ...(7) 

However, for the particle phase, the no-slip 

condition may not apply. Thus, even if the 

cylinder wall is considered to have transverse 

displacement only, 
p

U  is not necessary zero 

on the walls. Hence the boundary conditions 

on the wall will be : 

         ( )
2 2

sin
p

ca
V V Z cT

 

 
= =  −  on ( ),R Z T= .                                           ...(8) 
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 Since the flow is steady and axi-symmetric, we can introduce the stream function,  , from 

Schlichting (1960), such that: 
1 1

, ;
p

p
U U

R Z R Z


= =

 
 and 

1
V

R R


= −


, 

1 p

p
V

R R


= −



.  

Substituting these into the two sets of 

respective equations and eliminating the 

pressure terms gives the following equations: 

(a) For the Fluid phase: 

 
2 2 2 2

2

1 2 1 1
(1 )

f
q

T R Z R R R R R R Z


       
−  +  −   + −          

 

          ( )
2 2 2

0s p
qF=    +   − . ...(9) 

(b) For the Particle phase: 

 
2 2 2 2

2

1 2 1 1p p p p p p

p p
q

T R Z R R R R R R Z


       
 +  −   + −   

       
 

         ( )
2

0 p
qF=   − . ...(10) 

   Where 

2 2
2

2 2

1

Z R R R

  
  + −

  
. 

The boundary conditions on the walls in terms of the stream function will be: 

 0
R


=


                                                             

 ( )
2 2

sin
p

ac Z cT
Z Z

 

 


= = −

 
                                                               ...(11) 

The expression for the axial pressure gradients can be obtained as follows: 

(i) For the fluid phase;  

 We take the axial flow i.e. equation (2), which is expressed as: 

  

( )
1

1 (1 )
f

P V V V
q q U V

Z T R Z

    
− = − − + + 

    
 

                 ( )
2 2

0

2 2 2

1
(1 )

s p

f

V V V V qF
q V V

R R R R Z




   
+ − + − + + − 

   
  ...(12) 

 Introducing the stream function in equation (12) gives: 
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( )
2 2 2

2 2

1 1 1 1 1
1 (1 )

f

P
q q

Z R T R R Z R R Z R R R Z R

           
− = − − − + − + 

          
 

           

2 3 3

2 2 3 2

0

1 1 1
(1 )

1

s

p

f

q
R R R R R R Z R

qF

R R R





       
+ − − + − + 

     

 
+ − 

  

       ...(13) 

(ii) For the Particle phase; 

 Again, we take the axial flow case, i.e. equation (5), which is expressed as: 

 

1 p p p

p p

p

V V VP
q q U V

Z T R Z

   
= − + + 

      

( )0

p

p

F
q V V


+ −       ...(14) 

 Introducing the stream function into equation (14) gives; 

          

2 22

2 2

1 1 1 1 1p p p p p p

p

P
q q

Z R T R R Z R R Z R R R Z R

          
= − − + − + 

             

        

0
1 p

p

F
q

R R R

 
− − 

                  ...(15) 

Non-Dimensional Formulations 

Another process of modification of the 

resultant equations as obtained is the 

introduction of non-dimensional variables. 

This is a common technique used (mostly in 

Physics and Mathematics) to formulate 

quantities (or variables as in this case) whose 

magnitudes will be independent of the system 

of units being used, based on the following 

axioms; Yavorsky and Detlaf, (1980): 

“The numerical value of a physical quantity 

A is equal to the ratio of this quantity to its 

unit of measurement [A]. Thus
 
A

a
A

= . 

A physical quantity does not depend upon the 

choice of its unit of measurement. This 

implies that when the unit of measurement is 

increased q  times, the numerical value of the 

quantity is reduced to 
1

q
 times of its former 

value. 

A mathematical description of some physical 

phenomenon shows that the functional 

relationship between the numerical values of 

physical quantities is independent of the 

choice of the units of measurement of these 

quantities. Consequently, all the terms of an 

equation that describe a physical process 

should have the same dimensions, since this 

enables them to be converted to the 

dimensionless form by dividing both sides of 

the equation by some constants having the 

same dimensions.” 
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The non-dimensional or dimensionless 

variables are obtained by dividing each 

variable by a ‘characteristic’ variable on the 

same scale to eliminate the dimensions of 

such variable. Thus the quantities become: 

; ; ; ;
R Z c U V

r z t u v
a c c 

= = = = = . Hence, we have 
2a c




= ; and the 

wave          function becomes 
( , )

( , )
Z T

z t
a


 = . 

This results in the emergence of new parameters: 

  
b

a
=   (the amplitude ratio); 

a



=  (the wave number); and 

  ( ) ( )1 1s

s

a c ac
Re q q



 
= − = −  (the suspension Reynolds number) 

Substituting these dimensionless parameters into equation (9) gives: 

 ( ) 2 2 2 2

2

1 2 1 1
1 q

t r z r r r r r r z

     


       
−  +  −  + −          

 

              ( )2 2 21 1
f p

qk
Re

  


=   +  − .  ...(16) 

For the particle phase, equation (10) becomes: 

2 2 2 2

2

1 2 1 1p p p p p p

p
q

t r z r r r r r r z

     


       
 +  −  + −   

       
 

         ( )2

p p
qk  =  − .  ...(17) 

Where; 

 0 0; ;
f p

f p

F F
k k

c c

 

 
= =  

2 2

2 2

2 2

1

z r r r


  
  + −

  
 or 

2 2

2

2 2

1
r

z r r r r


    
+ +  

     .  

For the axial pressure gradient in dimensionless parameters; 

From equation (13) we obtain pressure gradient for the fluid phase as: 

      

( )
2 2 2

2 2 2

1 1 1 1
1 (1 )

f

a P
q q

c z r t r r z r r z r r r z r

      




        
− = − − − + − 

          
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2 3 3

2

2 2 3 2

1 1 1 1

1 p

f

Re r r r r r r z r

q
r r r

   


 


    
+ − + − − 

     

 
+ − 

   .     ...(18) 

From equation (15) we obtain for the particle phase: 

 

2 22

2 2 2

1 1 1 1p p p p p p

p

a P
q q

c z r t r r z r r z r r r z r

     



       
= − + − 

              

                    

1 p

p
q

r r r




 
− − 

   .
   ...(19) 

   Where:  

0 0;
f p

f p

aF aF

c c
 

 
= =

    

The boundary conditions become: 

          

0

1 cos2 ( ) ; 0 1

2 sin 2 ( )
p

r
at r z t

r z t
z z



  


 

 
=  

= + −   
 = = −

   

       ...(20) 

 

Method of Solution 

Following Li’s (1970) method, a long wave 

approximation, where  << 1, is made. Thus 

solutions for the stream functions   and 
p

  

are sought for in the power series of δ. Such 

that: 

 
2

0 1 2
    = + + +                                    ...(21) 

 
2

0 1 2p p p p
    = + + +                        ...(22) 

Substituting equations (21) and (22) into the 

dimensionless equations previously obtained 

respectively; collecting and equating 

coefficients of equal powers of δ on both 

sides of the respective equations; for up to 
2

; sequences of equations are obtained as 

follows: 

(a) For the fluid phase:  

Substituting equation (21) into equation (16) gives: 
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( )0 0 0

1
0

f p
L q D

Re
   + − = .         ...(23) 

 
( )0 1 1

1
f p

L q D
Re

   + −  

               

3 2

0 0 0 0 0 0 0

3 2 2

1 3 3 1
(1 )q D D

t r z r r r r r r r z

              
= − + − − −  

        
. ...(24) 

 

( )
( )

22
0 00

2 2 22 2

1
2

p

f p
L D q D

Re z z

 
   

  − 
+ + + −  

     

 

  ( )
3 2

0 1 0 0 0

3 2 2

1 3 3
1 q D

t r z r r r r r

          
= − + − +  

     
 

         

3 2

0 1 1 1 1 0 0 1

3 2 2

1 3 3 1 1
D D

r z r r r r r r r z r r z

                
+ − + − −  

         
. ...(25) 

(b) For the particle phase: 

Substituting equation (22) into equation (17) gives: 

 ( )0 0
0

p p
q D  − = .         ...(26) 

 ( )
3 2

0 0 0 0 0

1 1 3 2 2

1 3 3p p p p p

p p
q D q D

t r z r r r r r

    
  

      
− = + − +  

     
 

         
0 01 p p

D
r r z

   
−   

. ...(27) 

 ( )
( )2

0 0

2 2 2

p

p p
q D

z

 
  

  −
− + 

  

 

  

3 2

0 1 0 0 0

3 2 2

1 3 3p p p p p
q D

t r z r r r r r

          
= + − +  

     
 

     

3 2

0 1 1 1

3 2 2

1 3 3p p p p

r z r r r r r

       
+ − + 

    
 

          
1 0 0 11 1p p p p

D D
r r z r r z

       
− −     

. ...(28) 

 Where 
f

  and 
p

  are as defined above;   
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2

2

1 1
D r

r r r r r r

    
 −   
    

; and 

4 3 2

4 3 2 2

2 3 3
L

r r r r r r r

   
 − + −
   

  

 

Under this expansion therefore, the corresponding boundary conditions become: 

 At 1 cos ;r  = = +  such that ( )2 z t = − ; 

  0 1 2 0
r r r

    
= = =

  
;     (i) 

  
00 2 sin

p
r

z z


 


= = 

 
; (ii)                                        ...(29) 

  
11 0

p

z z

 
= =

 
;                  (iii) 

  
02 0

p

z z

 
= =

 
;                   (iv) 

For the Axial Pressure Gradient: 

Substituting equations (21) and (22) into the 

dimensionless equations (18) and (19), 

respectively; collecting and equating  

coefficients of equal powers of δ on both 

sides of the respective equations a long wave 

approximation for the axial pressure gradient 

can be obtained in the form: 

 
20 1 2

p p p p

z z z z
 

   
= + + +   

   
 .       ...(30) 

(a) For the fluid phase: 

From equation (18), substituting equation (21) and comparing with equation (30) gives the 

following sequences of equations: 

 ( )
( )2 3

0 00 0 0

3 2 2 3

1 1 1 1 1
1

p

f

p
q q

z Re r r r r r r r r

   


 −    
− = − + − − 

     
.   ...(31) 

 ( )
2 2 2

1 0 0 0 0 0 0 0

3 2 2 2

1 1 1 1
1

p
q

z r r t r z r r z r r r z r

             
− = − + −

         
 

       
( )2 3

1 11 1

3 2 2 3

1 1 1 1 1 p

f
q

Re r r r r r r r r

   


 −   
+ − + − − 

    
. ...(32) 

 ( )
2

2 0 1 1 0

3

1 1
1

p
q

z r r t r z r z r

          
− = − + 

       
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2 2 2 2

1 0 0 1 0 1 1 0

2 2 2 2

1 1

r z r z r r r z r r z r

                 
+ + − +   

            
 

        

2 3 3

2 2 2 2

3 2 2 3 2

1 1 1 1 1

Re r r r r r r r z r

       
+ − + − − 

     

( )2 21 p

f
q

r r

 


 −
−


. ...(33) 

(b) For the particle phase: 

From equation (19), substituting equation (22) and comparing with equation (30) gives the 

following sequences of equations: 

 
( )0 00

1 p

f

p
q q

z r r

 


 −
= −

                                                                      ...(34)                              

 

2 2 2

0 0 0 0 0 0 01

3 2 2 2

1 1 1 1p p p p p p p p

f

q q
z r r t r z r r z r r r z r

       



       
= − + − 

          
 

               
( )1 11 p

f
q

r r

 


 −
−


.   ...(35) 

 

2

1 0 1 1 02

3

1 1p p p p p p

f

p
q q

z r r t r z r z r

     



      
= − +  

       
 

    

2 2

1 0 0 1

2 2 2

1 p p p p

r z r z r

       
+ + 

    
 

         

2 2

0 1 1 0

2

1 p p p p

r r z r r z r

        
− +  

        

                        
( )2 21 p

f
q

r r

 


 −
−


.   ...(36) 

RESULTS 

The sequences of the differential equations 

are solved in stages to obtain values of   

and 
p

 , and consequently the other flow 

parameters; the axial flow velocities, volume 

flux and axial pressure gradient. The various 

stages are termed zeroth, first and second 

order approximations, with suffixes 0, 1 and 

2. The results so obtained are further 

investigated for time-averaged flow 

quantities. 

In this study however, we restrict to the 

zeroth order solutions only. These are the 

solutions that represent the limiting case of 

δ→0. Since the distance z  is measured by a  

 

scale of wavelength λ, the complete wave 

structure is retained in the boundary 
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conditions when the limit process δ→0, with 

( ), , ; ,r z t Re  fixed, is taken. Hence “the 

zeroth order solutions represent meaningful 

limiting solutions for very long waves”. Li, 

(1970). “The zeroth order solutions are more 

applicable to physical problems”. 

Muhammad and Sesay, (2010). 

 

 

 

(a) For the fluid phase: 

From equation (26), we have ( )0 0
0

p p
q D  − =    ( )0 0

0
p

D  − = . Substituting into 

equation (23) gives: 
0

1
0L

Re
 = ; or 

0
0L = , 

  

4 3 2

04 3 2 2

2 3 3
0

r r r r r r r


    
 − + − = 

                

 

The general solution will thus be: 
4 3 2

0
( , ) ( , ) ( , ) ( , )A z t r B z t r C z t r E z t r = + + + , 

 Where , , ,A B C E  are constants of integration. 

The boundary conditions and the symmetry 

conditions would demand that 
0

 be an even 

function in r . Hence ( , ) ( , ) 0B z t E z t = . 

This gives a general solution of the form:  

  
4 2

0 1 2
( , ) ( , )A z t r A z t r = + .          ...(37) 

Where 
1

A  and 
2

A  which are constants of 

integration which, as presented in Li, (1970), 

on applying the boundary conditions, are 

found to satisfy the following simultaneous 

equations: 

 

 

3 1 2

2

1 2

2 sin ( )

2 0 ( )

A A
i

z z

A A ii

   



 
+ =

 

+ =

                   ...(38) 

Solving the simultaneous equations (38) gives: 

 

2 2

1 4

2 2

2 2

1 1 1
( ) cos cos2 ( )

4 4

2 1 1
( ) cos cos2 ( )

4 4

A C t i

A C t ii

    


    


 
= + + + 

 

 
= − + + + 

 

              ...(39) 

The arbitrary function of time, C(t), arises 

from integrating with respect to z . It is 

related to the volumetric flow, hence will be 

determined later. 

Muhammad A.B et al., 2019 



   

132 
 

Bima Journal of Science and Technology, Vol. 3(1) July, 2019. ISSN: 2536-6041 

 
 

The instantaneous axial velocity, 0
v , can be obtained from equation (37) 

1
:recall v

r r

 
= − 

 
.  

2

0 1 2
4 2v Ar A = − −                 ...(40) 

Substituting for 
1

A  and 
2

A  gives: 

 ( )
2

2 2

0 2 2

4 1 1
cos cos2 1

4 4

r
v C t     

 

  
= + + + −  

  
.   ...(41) 

To find expression for the axial pressure gradient, we add equations (31) and (34) to obtain: 

2 3

0 0 0

3 2 2 3

1 1 1 1p

z Re r r r r r r

      
= − + − 

    
.        ...(42) 

Substituting for 
0

  as obtained in equation (37) gives: 0

1

1
16

p
A

z Re


= −


.            ...(43) 

 

2 20

4

1 16 1 1
( ) cos cos2

4 4

p
C t

z Re
    



  
 = + + + 

                ...(44) 

(b) For the particle phase:  

Starting from equation (26) gives : ( )0 0
0

p
D  − = . 

 ( )0 0

1
0

p
r

r r r
 

  
 − = 

  
; or ( )0 0

1
p p

k
r r

 


− − =


.                          ...(45) 

Following the symmetry condition as mentioned earlier, we have: 

 
2

0 0

1

2
p p

k r = − .           ...(46) 

Also, from equation (45); 

 
00

1 1 p

p
k

r r r r

 
− + =

 
; then 

0 0p p
v v k− = . Thus: 

0 0p p
v v k= − .   ...(47) 

To obtain 
p

k , equation (45) is substituted into equation (34), which gives: 

 
1

16
p

f

k A
Re

= − ;           ...(48) 

 Or 
2 2

4

16 1 1 1
( ) cos cos2

4 4
p

f

k C t
Re

    
 

 
= − + + + 

 
.    ...(49) 
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However, it should be noted that 
p

k  is purely 

a function of t  only. This can be shown 

below: 

Differentiating equation (46) with respect to 

z  gives:  

   
0 0p p

k
r

z z z

  
= −

  
; 

From boundary conditions (29) (ii); 0
p

k

z



=


, thus  0

p
k

z


=


. 

Integrating with respect to z  therefore, gives: 

( )
p p

k k t= . Henceforth it will be 

represented as such. 

To find expression for the instantaneous axial 

velocity for the particle phase, we consider 

equations (40) and (47), from which we have:                                                          

 
0 0p p

v v k= − ;    hence 
2

0 1 2
4 2

p p
v Ar A k= − − −

                 ...(50) 

The instantaneous volume flow rate, which is 

usually referred to as volume flux, denoted 

by 0
Q

 is defined as:  

Substituting for 0p


 as obtained in equation 

(46) gives: 

 
( ) 2

0 0 0

1
2 1 ( )

2
p

Q q q k t r  
  

= − − + −  
   r=η

.  

     

2

0

1
2 ( )

2
p

qk t r 
 

= − − 
  r=η

.  

Substituting for 0


 as obtained in equation  (37) gives: 

 

4 2 2

0 1 2

1
2 ( )

2
p

Q Ar A r qk t r
 

= − + − 
  r=η

. 

 Thus: 

2 2

0 1 2

1
2 ( )

2
p

Q A A qk t 
 

= − + − 
  .     ...(51) 

Substituting for the values of 1
A

 and 2
A

 as obtained in equation (39) gives: 

 
( ) 2 2 2

0

1 1
2 cos cos2 ( )

4 4
p

Q C t q k t       
 

= + + + + 
 

.         ...(52). 

Before proceeding to the next stage, let us summarize the zeroth-order flow quantities so far 

obtained; 
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(i) The instantaneous axial velocity for the fluid phase (equation (41)): 

 

( )
  

  
  

2

2 2

0 2 2

4 1 1 r
v = C t + ε + εcosβ + ε cos2β 1-

η 4 4 η
. 

(ii) The instantaneous axial velocity for the particle phase (from equation (50)): 

 
p0 0 p

v = v - k (t) ; where ( )t
 
 
 

2 2

p 4

f

16 1 1 1
k = - C(t) + ε + εcosβ + ε cos2β

Reχ η 4 4
. 

(iii) The axial pressure gradient, which is common for the whole suspension: 

 
  

 
  

2 20

4

p 1 16 1 1
= C(t) + ε + εcosβ + ε cos2β

z Re η 4 4
  (iv) The instantaneous volume flow rate or volume flux, which is common for the        whole 

suspension as given in equation (52): 

 ( )
 
 
 

2 2 2

0 p

1 1
Q = 2π C t + ε + εcosβ + ε cos2β +qπk (t)η

4 4
. 

It can be noticed that the arbitrary constant of 

integration ( )C t  is appearing in all the 

expressions. Its value will obviously depend 

on the type of study model. From Li, (1970), 

“it relates the axial pressure gradient to the 

instantaneous volume flow rate. For the 

special case, ( ) 0C t  , the flow is due solely 

to peristalsis, because 
0

0v =  if 0 = .” 

Also, from Muhammad and Sesay, (2010), 

where the case of pure (natural) peristaltic 

flow, with no initially applied external 

pressure gradient, is strictly being 

considered, it is obvious that ( ) 0C t = . This 

is because, if 0 = , a case of no amplitude, 

then 
0

0v = . On the other hand, if ( ) 0C t 

, it implies that there is an applied external 

pressure gradient, which contradicts the 

earlier assumption of a pure peristaltic flow 

from an initially stagnant situation, because it 

will imply that even if 0 = , there will still 

be fluid velocity, such that 
0

0v  , which is 

a contrary case.” 

However, since this study is strictly based on 

Li’s (1970) model, “the case of
0

( )C t C , a 

pure constant, is considered. This 

corresponds to the case of imposing a 

constant volume flux through the tube in 

addition to that due to peristalsis.” 

Time-Averaged Flow Quantities 

We will need to investigate the behavior of 

the results of the respective flow quantities 

averaged over one period of the wave motion. 

By this, we are kind of considering some 

particular constant volume flux of the flow. 

The mean flow quantities averaged over one 

period are obtained by integrating with 

respect to time over one period of wave 

motion. 
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Recall that: 1 cos2 ( )z t  = + − . 

Hence, by Spiegel, (1968), Zien and Ostrach, 

(1969), and Li, (1970) methods we have: 

             ( )
1 1

2 2

0

1
dt




−

= − .                                                                                   

              ( )( )
1 3

2 2 2

2
0

1
2 1

2

dt
 



−

= + − .                                                               

              ( )( )
5

21 2 2

30

1
2 1

2

dt
 



−

= + −                                                                                  

     

( )( )
71 2 2 2

40

1
2 1

2

dt
 



−

= + −                                                                                 

   

 

( )
1 1

1 2 2

0
0

cos2 ( ) 1
1 1

z t
dt




 

−−  
= − −  

                 

                                            

 ( )
3

1 2 2

20

cos2 ( ) 1
1

2

z t
dt


 



−−
= −

.                            

             
5

1 2 2

30

cos2 ( ) 3
(1 )

2

z t
dt


 



−−
= −                                      

 

( )
71 2 2

40

cos2 ( ) 5
1

2

z t
dt


 



−−
= − .    

                      

Thus, 
0

v , the mean axial velocity for the fluid phase is defined as: 
1

0 00
v v dt=  . 

 ( ) ( ) ( )
3 7 3

2 2 2 2 22 2 2
0

3
2 1 1 1 1 1

2
v r   

− − −   
 = − − + + − − −    

 

     ( ) ( )( ) 
3

2
2 2 2 22

0
1 2 2 3 1C r  

− − + − − + −


. ...(53) 

The mean axial velocity for the particle phase is defined as: 
1

0 00
p p

v v dt=  . 

 ( ) ( ) ( )
7

2 2 2 22
0 0

1 16
4 1 8 2 2 3

16
p

f

v r C
Re

  


− 
 = − − + +  

 
 

     ( ) ( ) ( )
2

2
2 28 2 1 2 3

2


  

  
+ + + − − +  

   
 

     ( ) ( )
3

2 22
0

1
1 8 6 1

2
C  

−

+ − − +   .   ...(54) 
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The mean axial pressure gradient for the whole suspension (which is common for both phases) is 

defined as: 
1

0 0

0

p p
dt

z z

 
=

 
 . 

 ( ) ( ) ( )
7

2 2 2 20 2
0

4
7 2 2 2 3 1

p
C

z Re
   

− 
  = − − + −   

.   ...(55) 

The mean volume flux for the whole suspension (which is also common for both phases) is defined 

as: 

1

0 00
Q Q dt=  .  

         ( )( )
2 2 1

2 2
0 0 0

16
2 1 1

4 8
f

Q C q C
Re

  
  



−   
 = − + − + + −   

   
 .  ...(56) 

The above equation can be re-expressed as: 

    ( ) ( )( )
21 1

2 2 22 2
0 0

8 1
2 1 1 1 1

4
f f

Q q C q
Re Re


    

 

− −
   

= − + − + + + −   
   

....(57) 

From which we have: 

      ( ) ( )( )
1 21 1

2 2 202 2
0 0 0

1 8 1 1 1
2 4

Q
C qS qS


   



−
− −  

= − + − + + + −     
.  ...(58) 

    Where 
0

1

f

S
Re

= . 

Substituting the value of 
0

C , the mean axial 

velocities and pressure gradients can be 

expressed in terms of the mean flux 
0

Q , as 

follows 

: 

( ) ( ) ( )
3 7 3

2 2 2 2 22 2 2
0

3
2 1 1 1 1 1

2
u r   

− − −   
= − − + + − − −   

  
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( )( )
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2 20 2

0 3
22 2 2 22

1
2 2

0

1 1
2 4

1 2 2 3 1

1 8 1

Q
qS

r

qS


  


  



−

− −

−

 
+ + + −      − − − + −    + −    

. ..(59) 

             

( ) ( ) ( ) ( )
27

22 2 2 22
0

1 1
1 8 2 1 2 3

4 2
p

f

u r
Re


   



−     
= − − + + − − +          

 

       ( )
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( )

2 1
2 20 2

0

2 2

1
2 2

0
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2 4

2 3 2

1 8 1
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qS


  


 



−

−

  
+ + + −      + + − 
  + −    

 

           ( ) ( )
( )( )

( )

2 1
2 20 2

03
2 22

1
2 2

0

8 1 1
1 2 4

1 6 1
2

1 8 1

Q
qS

qS


  


  



−

−

−

  
+ + + −  

  − − + +
  + −    

. ...(60) 

( )
( ) ( )( )

( )
( )

2 1
2 2 20 2

0 7
2 2 20 2

1
2 2

0

2 2 3 1 1
4 2 4

7 2 1

1 8 1

Q
qS

p

z Re
qS


   


  



−

−

−

  
+ + + + −     = − + − 

   + −    

 

                         ...(61)

 
DISCUSSION 

Observing the various results obtained for the 

fluid phase of the suspension, the results 

agree with those of Li, (1970), with slight 

modification, as would be expected. It is 

obvious that the modification arises due to 

the interacting term between the particle and 

fluid phases. Equations (41) and (50), 

confirmed the assertion that the axial flow 

velocity is directly proportional to the square 

of the radius of the flow tract (tube/pipe). 

This is so, even for the particle phase 

(equation (50)). 

 It is interesting to note that, in all the results 

obtained, (equations (41) – (50)); even for the 

case of time-averaged flow quantities 

(equations (53) – (57)); except for the volume 

flux, equations (52) and (57); are independent 

of the particle volume fraction, q . It is clear 

that if the volume fraction, q , if made zero, 
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it becomes a clear case of single-phase fluid. 

Hence one can conclude from this study that, 

the fluid type, as long as it is regarded as a 

Newtonian fluid, does not adversely affect 

the outcome of results. That is to say that any 

suspension, as described in this study, may 

conveniently be considered as a uniform 

single-phase fluid with little effect on the 

flow quantities, the drag effect of the 

suspended particles notwithstanding. 
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