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ABSTRACT

Industrial robots have been integrated into manufacturing activities to meet the dynamic nature
of customer needs. As a solution to keeping a competitive edge on the competition, it has
necessitated the adoption of newer and improved manufacturing practices. The technological
advancement brought about by the overall development of cyber-physical systems has
dramatically facilitated the needed technological growth. The adoption of robotics has led to
smart manufacturing and encouraged the establishment of a collaborative work environment.
The study aimed to program a robotic manipulator using demonstrative-kinesthetic teaching,
assessing its accuracy to acquire desired target positions and validating using a palletising
experiment. Using structured texts to perform the same experiment serves as a control
experiment, and the demonstrative-kinesthetic teaching approach is compared against it in
terms of joint values acquired while using both methods. The Dobot Magician robot
manipulator was programmed with both approaches for the experimental tasks. The results
showed a more accessible programming approach, especially considering workforces not
accustomed to robotic programming and robot manipulator learning of demonstrated tasks.
The high level of joint accuracy demonstrated the high flexibility the demonstrative-
kinesthetic teaching offers as a programming method, especially in programming and re-
programming in factory set-ups due to the fluctuating manufacturing demands.
Keywords: Accuracy assessment; demonstrative-kinesthetic teaching; desired position;
robotic manipulator; palletising; structured-texts.

INTRODUCTION
The manufacturing world is quickly evolving
to cope with consumer demands' dynamic
yet complex nature. Smart manufacturing is
the way forward in response to the needs that
traditional manufacturing practices are no
longer practical to achieve. The onset of the
fourth industrial revolution (4IR) has
necessitated overhauling conventional
manufacturing practices with the adoption of
newer, cost-effective, and efficient strategies.
These strategies include using robotics and
automation and applying innovative
technologies such as artificial intelligence
and machine learning (Kwanya, 2023) in
manufacturing processes.
Robotic manipulators play a crucial role in
achieving smart manufacturing, thus
bringing about the rise of smart factories. A
robotic manipulator is a unique robot

employed mainly in industries for
specialised task execution with re-
programmability possibilities (Arteaga et al.,
2022). Jahnavi and Sivraj (2017) describe a
robotic manipulator as an electromechanical
device consisting of kinematic joints and
links driven by motors or other actuators.
Repetitive tasks are carried out accurately
and precisely due to the automatic control
alongside the mechanical structure. Robots
were initially programmed using traditional
methods such as teaching pendants,
structured texts, and graphical interfaces
(Amar et al., 2020). The methods proved to
be quite non-intuitive, tedious, and time-
consuming (Zhou et al., 2020).
Newer programming methods such as
programming by demonstration (PbD) or
learning from demonstration (LfD), use of
augmented and virtual reality (AVR),
machine learning (ML) technologies
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(Mosavi & Varkonyi, 2017; Orendt et al.,
2016), kinesthetic teaching (KT), and one-
shot kinesthetic(Müller et al., 2020) are
being employed with improvements in
technologies. KT programming is an
approach where the programmer shows new
behaviours via learner robot body
manipulation as it records through its sensors
(proprioception) (Calinon, 2018; Villani et
al., 2018). The techniques employed are
physical manipulation, demonstrative-
kinesthetic teaching (DKT), and robot
movement control through interfaces, such
as teleoperation or tele-kinesthetic teaching
(TKT).
TKT technique offers an opportunity for
remote programming, especially for
dangerous areas like nuclear plants (Si et al.,
2021). Still, it faces the limitations of
additional lengthy user training on the
interfaces, availability of the chosen input
hardware, and additional effort required to
develop the selected interface (Ravichandar
et al., 2020). The DKT allows for natural
programming. The onboard sensors record
the robot's state during the interaction,
provisioning an intuitive approach with
minimal training requirements (Eiband et al.,
2023; Tykal et al., 2016) as it does not
burden the programmer with the requirement
of knowledge of programming languages
such as Python (Heimann & Guhl, 2020) or
robotics (Tykal et al., 2016). It provides an
avenue for exploring the physical human-
robot interaction (pHRI) (Landi et al., 2017).
The use of vibrotactile feedback for the
comprehension of specified kinematic
constraints by operators was explored by
Ruffaldi et al. (2017) as KT task
enhancement, considering the challenges
posed by redundant designs from human
poses. The DKT approach was used by
Capurso et al. (2017) as the lead-through
programming (LTP) as a means of fast

trajectory teaching of redundant robots to
eliminate the expensive torque/force sensors.
Automatic trajectory generation by non-
expert users from single kinesthetic guidance
was carried out by Müller et al. (2020) as a
means of reducing costs. The costs were
associated with robot integration in
production lines.
The KT provides avenue for the non-skilled
shop-floor operators to program the robots in
line with the assigned tasks. DKT provides
an intuitive avenue for programming robots,
especially in incorporating robots and
humans within the same workspace, thus the
collaborative technology (Cobot). The study
aimed at programming a robotic manipulator
using the DKT, creating a platform to
facilitate the DKT programming, and
assessing the accuracy in acquiring desired
target positions using DKT. Structured texts
(Control) were used as a control experiment,
and the palletising experiment was done
using DKT and Control to validate the
experiment.

MATERIALSAND METHODS
Description of Robotic Manipulator
The robot manipulator used in this study was
the Dobot Magician. It has three stepper
motors and one servo motor. The
manipulator has four axes, with an end-
effector having a payload of 500g. The robot
manipulator’s joint range of motion is in
Table 1.
Table 1: Joint Range of Motion (Shenzhen

Yuejiang Technology Co., 2017)
Axis Movement
Axis Range
Joint 1 -135o to +135o
Joint 2 0o to +85o
Joint 3 -10o to +95o
Joint 4 +90o to –90o

The joint and cartesian configurations of the
Dobot magician are shown in Figure 1.
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Figure 1: Joint and Cartesian Configurations of Dobot Magician (Adapted from Shenzhen
Yuejiang Technology Co. (2017))

Experimental Set-up and Procedure
The materials for the experiment were a
laptop, robotic manipulator (Dobot
Magician), wooden block, USB connection
cable, power source, pneumatic pump, and
pneumatic gripper (end-effector). The
experiment was set up as shown in Figure 2.
To determine the accuracy of DKT, a control
platform ( Figure 3) based on Python
language was created using Visual Studio

IDE to control the robot demonstratively
(DKT) by using the lock button on the
forearm to capture the positions of the end-
effector( Hand-held Trigger (HHT)) and
tabulate the joint values in a pose.csv file.
For the control experiment, the same effector
positions were captured using structured
texts (Control), and the joint positions were
saved on the pose1.csv file using the getpose
() command in the code.

Figure 2: Experimental Set-up
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Figure 3: Control Platform in MS Visual Studio.
The palletising experiment involved picking
the wooden block from the start to the stop
position over four levels. The position of
points A and B were determined for
distances 25mm, 40mm, and 55mm apart
from the initial position of A1 (Start) and B1

(Stop) on a straight line as the stop points of
the experiment in Figure 4 and Figure 5.
The experiment was replicated for each level
(A2, B2, A3, B3, A4, B4). The joint values
were recorded and stored in the CSV file for
each replication and level.

Figure 4: The start position A1 Figure 5: The stop position B1

RESULTSAND DISCUSSION
The accuracy of the target position was
determined using the joint values obtained
during the palletising task. End effector

positions were determined using structured
texts (Control) and DKT techniques for the
joint configurations. A comparison of the
joint values for the structured text (Control)
with the DKT was as shown in Figure 6 - 8.
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Figure 6: Individual Joint Angle Value Plot
The joint value absolute and percentage errors were calculated using Equation (3- 1and
Equation (3- 2).

�������� ����� = ������� − ��� Equation (3- 1)

���������� ����� =
�������� �����

�������
∗ 100% Equation (3- 2)

The percentage errors of the joints were as plotted in Figure 3- 2, and overall joint mean
percentage errors, as shown in Table 3- 1.

Figure 7: Joint Percentage Errors
Table 2: Joint Mean Percentage Errors
Joint1 Joint2 Joint3 Joint4
2.60 2.12 2.73 5.24

From Figure 7- 8 and Table 2, it was
determined that joint 4 had the highest mean

percentage error of 5.24%, while joint 2 had
the lowest mean percentage error of 2.12%.
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The low mean percentage error on joint 2
was due to the possible least number of
sources of inaccuracies in comparison to the
high value on joint 4, which may have been
contributed by user-related inaccuracies,
especially in placing the end-effector in the
desired position demonstratively,
computational errors, computer-control
algorithms and, link bending due to gravity
and loads.
From the palletising task, in this case, pick
and place, the robotic arm could pick the
wooden box from the start positions of A and
place it at place B as required. Pick and
place points A and B were chosen using the
Control program, which provided the basis
for determining accuracy.

CONCLUSION
The robotic arm was programmed to carry
out palletising tasks as programmed with the
demonstrative-kinesthetic teaching (DKT)
and compared with the use of structured text
(Control) to assess the accuracy of DKT in
acquiring a desired position. The robotic arm
could pick items at set pick points and move
them to the place points, and the points'
accuracy level was determined by the joint
angle values obtained using the DKT and
compared against those obtained by the
Control method. It was determined that joint
4 had the highest mean percentage error of
5.24% while joint 2 had the lowest mean
percentage error of 2.12%. The significant
percentage of error in joint four was
attributed to the user's accuracy level while
selecting the target points using the robotic
arm kinesthetically, joint value rounding off
errors by the computer, and link bends due to
gravity.
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