
DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

30

Comparison of the Empirical Performance of Greedy, Hill Climb and Simulated Annealing
Algorithms in GSAT Solver on DIMAC and Aloul Benchmarks
A. J. Kawu1*, G. M. Wajiga2 ,Y. M. Malgwi2 and Usman Mohammed2

1Department of Computer Science, Faculty of Science, Gombe State University, Gombe, Nigeria
2Department of Computer Science, Modibbo Adama University Yola, Adamawa State, Nigeria

Corresponding Author: ahmadkawujibir@gsu.edu.ng
ABSTRACT

Boolean satisfiability solvers have made a significant impact in different areas of research such as
Mathematics, Computer Science (artificial Intelligence, Automatic Test Pattern Generation, and so
on). The problem to determine whether a given Boolean formula has a model was proved to be NP
complete by Cook in 1971. This area witness a number of research over the past 5 decades. A
number of algorithms were developed for solving SAT problem. These algorithms showed varying
performance on different categories of SAT instance (random, industrial and handcrafted). This
paper proposed to compare three (3) options of the Stochastic Local Search solver GSAT(Greedy
SAT Solver). The options are Greedy, Hill Climb and Simulated Annealing. This work was
inspired by the need to provide an insight on their performance on different problem Instances to
serve as a guide for researchers who are interested in developing hybrid decision heuristic,
initialization of variable weights in a decision heuristic and portfolio SAT solver. We empirically
compared the performance on the three options on a Dell latitude E7470 laptop. Our result showed
that Hill Climb option outperformed the other options in a number of problem instances solved
while Simulated Annealing performed large number of downward and sideways moves. This
implies that Hill Climb is the best choice for a hybrid solver while Simulated Annealing is
preferable for initialization of variable weights.
Keywords: Satisfiability, Hill Climb, Simulated Annealing, Stochastic Local search, Systematic
search

INTRODUCTION
Boolean Satisfiability (SAT) is one of the main
issues in mathematics and computer science
that is generally thought to be untractable.
Since Cook demonstrated in 1971 that this
problem is NP-complete (Cook, 2023),
theorists have examined it in great detail
(Ganesh & Vardi, 2020). Many intriguing SAT
examples can be solved effectively in practice
utilizing heuristic algorithms, despite the
general belief that SAT is difficult in the worst
situation. The research community has found a
wide range of distinct heuristic methods over
the years, essentially by discovering heuristics
that perform well on various SAT instances,
but also in part by significantly improving on
earlier concepts (Ghanem, & Siniora, 2021).

The goal of the Boolean satisfiability problem,
a traditional combinatorial optimization
problem, is to ascertain if a given Boolean
formula can be made true by a set of variable
assignments (Reifenstein etal, 2023).The major
algorithms used for solving Boolean
satisfiability problems are the complete
algorithms (based on DPLL) and incomplete
algorithms (Stochastic local search algorithms
(SLS)). Local search algorithms are an
attractive choice for solving the boolean
satisfiability problem because they scale better
with input size than systematic algorithms
(Cohen et al, 2021). Among the most well-
known techniques for SAT problem solving at
the moment are SLS algorithms. Some
incomplete SAT solvers are surprisingly more

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

31

successful than state-of-the-art systematic
solvers at finding models of satisfiable
formulae for random k-SAT cases, despite the
fact that they cannot guarantee either finding
the answers or proving a particular Boolean
formula unsatisfiable (Hoos and Stutzle as
cited in Fu et al, 2021). According Mengshoel,
et al (2020) SLS algorithms are greedy
optimizers that avoid becoming stuck in local
but non-global optima by making random
moves. Since there are many complicated
combinatorial optimization and decision issues
in various scientific and industrial domains
where computer methods have been
comprehensively used, the research
community and industry are very interested in
finding solutions. SLS is a crucial and
effective approach for resolving challenging
combinatorial optimization issues (Kastrati &
Biba, 2021). We were inspired to examine the
performance of three options of GSAT solver
(Greedy, Hill Climb, and Simulated Annealing)
on various SAT instances, by the success that
GSAT demonstrated in solving difficult
combinatorial problems more quickly than
systematic solvers based on DPLL
(Muhammad and Stuckey, 2006).
This paper is an extension of our earlier work
by Kawu et al (2024) where we compared the
performance of the Minisat solver and the
Simulated Annealing option of the GSAT
solver on the SATLIB benchmark. Our result
indicated that Minisat outperformed SA in
most instances. This result contradicts the
earlier published result (Selman & Kautz, 1993;
Hoos & Stützle, 2000). Motivated by this
observation, we propose to compare three
options of the GSAT solver version 35 on
DIMACS (a subset of SATLIB) and Aloul
Benchmarks.
Our work differs from algorithm configuration,
where some parameters are chosen at run time
to improve performance. All configuration are
set at the onset of the program execution. The
main objective of this paper is to test the

performance of the three algorithms on
different Benchmarks to gain and insight of
their strengths and make recommendation for
their use either in a hybrid SAT solver or
variable activity initialization or initial weights.
This work is to give an insight into the
performance of each algorithm on different
problem instances to serve as a guide for
researchers who may like to build a hybrid
solver using two stochastic local search
algorithms or a local search and a systematic
search algorithm. Our work will also serve as a
guide for detecting stagnation in a local search.
Stagnation occurs when a search algorithm is
trapped in a local optima. This may be
detected by high sideway moves.
GSAT
GSAT and WalkSAT are SLS solvers in which
the variable to flip is chosen more carefully.
For these types of solvers, the algorithm has
two types of moves to choose from randomly.
A “steepest descent” move where it flips the
variable which minimizes the objective
function. This step is not always possible
because the algorithm can sometimes be at a
local minimum (Reifenstein et al, 2023).
GSAT is a greedy algorithm, that tries to flip
variables so that as many clauses as possible
are satisfied. If the chosen variable v is such
that DIFF[v] > 0, the total number of
unsatisfied clauses decreases. This is call this a
"downward" move. If DIFF[v] = 0, then the
total number of satisfied clauses remains
constant; this is call a "sideways" move.
Finally, if the flipped variable has DIFF[v] < 0,
then an "upwards" move is performed, in
which the number of satisfied clauses
decreases. Each iteration of the inner loop is
referred to as a "flip", and each iteration of the
outer loop as a "try".
Hiil-Climbing
Hill climbing is an iterative algorithm that
starts with an arbitrary solution to a problem,
then attempts to find a better solution by

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

32

making an incremental change to the solution.
If the change produces a better solution,
another incremental change is made to the new
solution, and so on until no further
improvements can be found. The solution
obtained by this method may not be the global
optimum; it will only be a local optimum. In
hill-climbing search, we select any local
change that improves the current value of the
objective function. Greedy local search is a
form of hill-climbing search where we select
the local move that leads to the largest
improvement of the objective function.
Traditionally, one would end hill-climbing and
greedy search procedures when no local move
could further improve the objective function.
Upon termination, the search would have
reached a local, but not necessarily global,
optimum of the objective function. (Selman &
Gomes, 2006).
Simulated Annealing
According to Kirkpatrick et al (1983)
Simulated annealing is a local search
technique that comprises of sideway and
downhill moves. In simulated annealing,
downhill moves are accepted with a
probability based on the size of the change in
the objective function, with the `worst' moves
becoming the least likely. The upward move is
accepted based on the temperature level; at
higher temperature the probability of accepting
upward move is high while at lower
temperature the algorithm return to the greedy
approach. According to Selman and Gomes
(2006), in simulated annealing, the
temperature starts high and is slowly lowered
during the search process. For more
information on application of Simulated
Annealing in SAT problems and how to
improve its performance, see (Reifenstein et al,
2023).

Related Work

Stochastic Local Search algorithms have been
a competitor for systematic search algorithms
in solving satisfiability problems. Comparing
the performance of different SAT solvers
(systematic and incomplete) has received
attention of a number of researchers. This is to
discover their strengths and weaknesses and
highlight areas that need improvement. Selman
and Kautz(1993) compared GSAT with
Simulated Annealing and showed that GSAT
can be used as a efficient method for executing
the low-temperature tail of annealing schedule.
Mitchell et al. (1992), empirically found that
the most difficult CNF expressions were
created when clause to variable ratio = 4.30,
and conjectured that the ratio approached 4.25
for large variables. Below 4.25, the expression
has increasingly many solutions and is
correspondingly easier to satisfy. Above 4.25,
the expression is increasingly likely to have no
solutions and a contradiction can be found
more easily. At 4.25, about half the randomly
generated CNF expressions are satistifiable,
and few are sufficiently under or over-
constrained to permit an easy answer. This
property has been observed in a number of AI
problems (Cheesman et al., 1991). Hao and
Dorne (1996) compared the performance of
their proposed heuristic local search template
with Simulated Annealing. Their heuristics
showed similar performance with SA on
constraint satisfaction problems. Hoos and
Stützle (2020) conducted a thorough
comparative analysis of the performance of
GSAT and WalkSAT across a range of
benchmark instances, which included both
randomized distributions and SAT-encoded
problems from various domains. The results
indicated that these algorithms are capable of
effectively solving challenging SAT problems
with a large number of variables, often
surpassing the performance of conventional
systematic SAT algorithms. Dutertre (2020)
evaluated the performance of 16 state-of-the-

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

33

art SAT solvers on SMT_LIB repository
Benchmark. Their result showed that CaDical
outperformed the other solvers. Chu et al
(2023) proposed a new clause weighted
scheme for SLS solvers to remedy the bad
effect initial soft clause weight has on the
performance of SLS in solving weighted
partial MaxSat problems. They compared their
new solver (NuWLS) with four state-of-the-art
solvers. Their results showed that their solver
outperformed its competitors. They further
investigated the complimentary of their solver
improving hybrid solvers. Their result showed
favorable improvement. FyalSAT, a Field
Programmable Gate Array-based SLS solution,
was proposed by Choi and Kim (2024). The
authors compared their solution with others
that were comparable and based on different
SLS, such as WalkSAT. For benchmarks with a
wide range of literals, their solver showed a
high throughput. The new solver performed
better than the existing ones. Li and Huang
(2005) combined the deterministic variable
selection heuristic of GSAT and the random
heuristic of WalkSAT to remedy the
weaknesses of the two heuristics. The hybrid
heuristic showed improved performance in
their new solver, G2 W SAT. Peng et al. (2020)
compared their novel SLS heuristic for solving
SAT instances (AspiSAT) with other SLS
heuristics (Sparrow and Swqcc refer to the
paper for details) on random 3-SAT instances.
The AspiSAT heuristic outperformed the two
heuristics.

MATERIALSAND METHOD
The three GSAT options tested in this work are
Greedy, Hill-climb and Annealing. The
parameters set for all the options are:
maximum flip and maximum try. Annealing
option has in addition the two parameters
about the temperature schedule. We run several
experiments with different settings. The first
experiment was run with a maximum flips of
five times the number of variables (which is

the default) and five iterations (here the
default is one iteration) for all the three options.
More experiments were run with maximum
flips of ten times number of variables, fifteen
times, twenty times and twenty five times. For
annealing option the default temperature
schedule is 100 50 to 20 by .8 (see Algorithm 1
for detail explanation of the parameters). More
experiments were run with different schedules,
for example 200 100 to 20 by 0.8, 200 100 to
20 by 0.4.
After each experiment, the following
information is recorded: number of variables,
number of clauses, best flips, down ward
moves, sideways moves, execution time,
number of tries, and finally whether a model is
found (SAT) or a failure is returned (UNSAT).
The results obtained were presented in tabular
form and graphs.
We compared the average execution time of
the three options on different problem
instances. We also compared their ability to
solve problems.
GSAT algorithm as contained in the user’s
manual of the GSAT solver version 35. The
algorithm is the same for the three options.
The major differences are highlighted below
the algorithm.
Algorithm1: The GSAT procedure
Procedure GSAT
Input: a set of clauses C, and integers MAX-
FLIPS, and MAX-TRIES.
Output: a satisfying truth assignment of C, if
any is found.
begin
for i := 1 to MAX-TRIES:
T := a randomly generated truth

assignment;
For j := 1 to MAX-FLIPS:
if p satisfies C then return p;

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

34

for each variable v:
let MAKE[p] = the number of clauses

currently unsatisfied
by T that would become satisfied if

the truth value of
p were reversed ("flipped").

let BREAK[v] = the number of clauses
currently satisfied

by T that would become unsatisfied if
the truth value of

p were flipped.
let DIFF[v] = MAKE[v] - BREAK[v];

end for
let MAX_DIFF_LIST = list of variables

with the greatest DIFF;
v := a random member of

MAX_DIFF_LIST;
p := p with the truth assignment of v

flipped;
end for

end for
return "no satisfying assignment found";

end.
The option "hillclimb" is available in GSAT
version 26 (and later), which modifies the
above algorithm by considering all variables
with DIFF >=1 to be equally good, and all
with DIFF <= -1 to be equally bad. It is not

quite as greedy. Because of this change the
implementation is able to store all the variables
in three buckets (up, down, and sideways), and
quickly shuffle variables between the buckets
after each flip. This leads to about a 20 fold
speedup for well form formulas with very
large numbers of variables (10,000 or up).
GSAT also includes a simple simulated
annealing option that may be run instead of or
in conjunction with greedy local search. The
syntax for supplying the annealing parameters
in the interactive prompt of the GSAT solver is
given as:

STEPS START_TEMP to END_TEMP
by FACTOR
For example,

100 50 to 20 by .8
this mean anneal at temperature 50 for 100
steps, then at 50*0.8 for 100 steps, then
50*0.8*0.8 steps, etc, stopping AFTER a run
in which the temperature is 20 or less. (For
example, the last 100 steps may be at19.89.).
The experiments in the study were conducted
on a Dell Latitude E7470 laptop equipped with
a 2.40GHz Core i5 CPU and 16GB of RAM.
The operating system used for the experiments
was Ubuntu 22.04.3 LTS.

RESULTSAND DISCUSSION
The results obtained from different runs of the
3 options with different parameter settings are
presented in the tables below:

Table 1: Comparison of the three algorithms on fpga problem instance
Algorithm Average Down move Average Sideways Best flips

Greedy 9.8 1057.75 96.91

Hill Cimbing 11.42 799.58 182.33

Simulated Annealing 63.75 1086.58 709

The Greedy algorithm performed less down
ward moves with higher sideway moves as
shown in Table 1. It is followed by the Hill-

Climbing algorithm where the average
sideway moves reduces compared to the
greedy option while both downward and best

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

35

flips increased. The Simulated Annealing
option performed much downward and
sideway moves. These results showed the

greedy nature of the Greedy and Hill Climb
option as compared to the exploratory nature
of SA option.

Table 2: Comparison of the performance of the three algorithms on ii problem instance
Algorithm Average clause/variable ratio Percentage of instance solved

Greedy 11.30 28.57

Hill Cimbing 11.30 53.66

Simulated
Annealing

11.30 4.88

Table 2 depicts that Hill Climbing algorithm
outperformed the other two options on the ii
problem instances with an average clause to

variable ratio of 11.30. Simulated annealing
solved the least number of problem instances.

Table 3: Execution time of the Greedy algorithm on aim problem instance based on number of
variables.

Number of variables Execution time in seconds Number of Instances Solved instances

50 0.016004 14 6

100 0.037406 13 2

200 0.04372 12 0

as shown in table 3, the execution time of the
greedy algorithm increases as the number of

variables in the proble instance increase.
However the number of solved instances
decreases as the number of variables increases.

Table 4: Execution time of the Hill Climbing algorithm on aim problem instance based on number
of variables.

Number of variables Execution time in seconds Number of Instances Solved instances

50 0.016481 14 2

100 0.043216 13 1

200 0.038865 12 1

Table 4 shows that Hill Climbing algorithm
showed better performance in terms of
execution time and number of solved instances
as the number of number of variables increases.
However, unlike the Greedy algorithm, Hill
Climbing doesn’t show a consistent increase in
time with problem size, suggesting that the
algorithm sometimes reaches solutions (or

local optima) quickly, depending on the
landscape of the problem instance. The Hill
Climbing algorithm is similar to the Greedy
algorithm in terms of execution time for 50
and 100 variables, but slightly slower for 200
variables. Both algorithms are efficient in
terms of time.

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

36

Table 5: Execution time of the simulated Annealing algorithm on aim problem instance based on
number of variables.

Number of variables Execution time in seconds Number of Instances Solved instances

50 0.04899 14 6

100 0.057679 13 2

200 0.059043 12 0

Table 5 depicts the relative increase of the
execution time of the Simulated Annealing
algorithm as the number of variables increases.

The algorithm could not solve any instance in
200 variables category of the problem instance.

Table 6: comparison of the performance of Greedy algorithm on different problem instances (x5).
Problem Instance No. of Instances Solved Unsolved Total Time Max Try Modal Try

Fpga 11 11 0 0.003536 1 1

Aim 39 7 32 0.004157 3 1

II 41 12 29 0.062851 3 1

Par 30 0 30 - - -

As shown in table 6, the Greedy algorithm
solved all the instances in the fpga category.
The SA algorithm solved only 18% and 29%
from the aim and ii categories respectively.

The algorithm could not solve a single instance
from the par category in the specified number
of tries and flips.

Table 7: comparison of the performance of Hill Climbing algorithm on different problem
instances(x5).

Problem Instance No. of Instances Solved Unsolved Total Time Max Try Modal Try

Fpga 11 11 0 0.002986 1 1

Aim 39 4 35 0.004471 3 1

II 41 23 18 0.151586 5 1

Par 30 0 30 - - -

Table 7 shows that Hill Climbing algorithm
performed similar but faster than the Greedy
algorithm on the fpga problem instances.
However, it solved les number of instances in
the aim category and solved more than 50%of

the instances in the ii category with a higher
maximum try of 5 and higher execution time.
The algorithm performed similar to the Greedy
algorithm.

Table 8: comparison of the performance of Simulated Annealing algorithm on different problem
instances (x5 flips and default temperature schedule).

Problem Instance No. of Instances Solved Unsolved Total Time Max Try Modal Try

Fpga 11 9 2 0.025627 5 1

Aim 39 8 31 0.0051054 4 1

II 41 2 39 0.002957 2 2

Par 30 0 30 - - -

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

37

Table 8 shows that Simulated Annealing
algorihm performed less that both the greedy
and Hill Climbing algorithms in terms of
number of solved instances and maximum
number of try. However, the algorithm showed
better execution time on the ii category.

Figure 1: Comparison of the Average
Downward moves of the Hill Climbing and
Simulated Annealing algorithms on fpga
problem instances.
Fig 1 shows that the Hill Climbing algorithm
performed higher downward moves compared
to the Simulated Annealing across all ratios.

Figure 2: Comparison of the Average
Sideways moves of the Hill Climbing and
Simulated Annealing algorithms on fpga
problem instances.

As shown in fig 2 the Hill Climbing algorithm
performed higher sideways moves for a clause
to variable ratio below 4 while the Simulated
Annealing algorithm performed higher
sideways move as the ratio increases above 4.

Figure 3: Comparison of the Average
execution time of the Greedy, Hill Climbing
and Simulated Annealing algorithms on fpga,
aim and ii problem instances.

Figure 4: Comparison of the number of
instances solved by the Greedy, Hill Climbing
and Simulated Annealing algorithms on fpga,
aim and ii problem instances.

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

38

Figures 3 and 4 compares the average
execution time and number of instances solved
respectively by the three algorithms on fpga ,
aim and ii problem instances . Greedy and Hill
Climb were more efficient on both fpga and
aim instances. However they spent longer time
in ii category. This may be due to the higher
number of instances they solved. The Greedy
and Hill Climb algorithms have been able to
solve all the instances in the fpga category
while the SA algorithm solved only 82%.
Despite the low performance of SA, it has
however make higher number of downward
moves and fewer sideway moves. This shows
it suitability for use in variable activity
initialization. This result is extracted from the
result presented in table x and y to emphasis
the execution time variation among the three
algorithms and their ability finding a model.
We recommend using Simulated Annealing
algorithm for initialization of variable weight
of conflict-driven algorithms such as VSIDS
heuristics this is due to the high average
downward and sideways move of the
algorithm on different sat problem instances
more especially the fpga category of the Aloul
Benchmark.
The results presented provide a number of
insights. Table 1 and Fig 1 and 2 showed that
Simulated annealing perform many
downwards and sideways moves on industrial
problem instances. The algorithm performed a
number of exploration and exploitation of the
search space. This algorithm can be used in a
hybrid approach to assign weights to variables
during the initial running phase of a solver for
use by another algorithm or heuristic either
systematic or stochastic. Table 6 to 8 showed
that Hill Climb algorithm solved the highest
number of problem instances followed by
greedy approach. This shows that Hill Climb
can be used in a Hybrid solver where two or
more algorithms are use in a portfolio. Here
the Hill Climbing algorithm will be selected to

solved problem instances from random
problems category.

CONCLUSION
in this work we compared the performance of
three options of the GSAT solver on DIMACS
and Aloul Benchmarks to provide an insight on
their strengths on different problem categories
(industrial and randomly generated problem
instances) to serve as a guide for building a
hybrid decision heuristic or SAT solver from a
combination of Stochastic local search
algorithms or a stochastic and systematic
(DPLL or CDCL) algorithms. Our result
showed that Hill Climbing is the best choice
for Hybrid solver followed by the Greedy
algorithm. However, Simulated Annealing may
be preferable in initialization of variable
weights or variable assignment (see Berend &
Twitto, 2020 for initial value assignment for
SLS). SA can also be applied in a hybrid
decision heuristic of a systematic algorithm.
We recommend using SA to guide Conflict-
Driven Clause Learning solvers (refer to Cai et
al., 2022). All clauses that the SA has satisfied
are deleted from the clause database during the
preprocessing phase. It can also be applied to
incremental SAT solver like Minisat, in which
the CDCL solver adopts the clauses that the
SA has already satisfied. SA can be used to
assign scores to variables with higher make
value because of its exploratory nature at the
start of the search process. The variable
activity of the CDCL decision heuristic, such
as VSIDS (Variable State Independent
Decaying Sum), can be initialized using these
scores.

REFERENCES
Berend, D., & Twitto, Y. (2020). Effect of

initial assignment on local search
performance for Max Sat. In 18th
International Symposium on
Experimental Algorithms (SEA 2020).
Schloss-Dagstuhl- Leibniz Zentrum
für Informatik

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

39

Cai, S., Zhang, X., Fleury, M., & Biere, A.
(2022). Better decision heuristics in
CDCL through local search and target
phases. Journal of Artificial Intelligence
Research, 74, 1515-1563.

Choi, Y. K., & Kim, C. (2024). FYalSAT:
High-Throughput Stochastic Local Search
K-SAT Solver on FPGA. IEEE
Access.

Cohen, A., Nadel, A., & Ryvchin, V. (2021).
Local search with a SAT oracle for
combinatorial optimization.
In International Conference on Tools

and Algorithms for the Construction and
Analysis of Systems (pp. 87-104). Cham:

Springer International Publishing.
Cook, S. A. (2023). The complexity of theorem-

proving procedures. In Logic, automata,
and computational complexity: The
works of Stephen A. Cook (pp. 143-152).

Chu, Y., Luo, C., Hoos, H. H., & You, H.
(2023). Improving the performance of
stochastic local search for maximum
vertex weight clique problem using
programming by optimization. Expert
Systems with Applications, 213,

118913.
Dutertre, B. (2020). An Empirical Evaluation

of SAT Solvers on Bit-vector Problems.
In SMT (pp. 15-25).

Fu, H., Wu, G., Liu, J., & Xu, Y. (2021). More
efficient stochastic local search for
satisfiability. Applied Intelligence, 51,
3996-4015.

Ganesh, V., & Vardi, M. Y. (2020). On the
Unreasonable Effectiveness of SAT
Solvers.

Ghanem, M., & Siniora, D. (2021). On
Theoretical Complexity and Boolean
Satisfiability. arXiv preprint
arXiv:2112.11769

Hao, J. K., & Dorne, R. (1996). Empirical
studies of heuristic local search for
constraint solving. In Principles and
Practice of Constraint Programming—

CP96: Second International
Conference, CP96 Cambridge, MA,

USA, August 19–22, 1996 Proceedings
2 (pp. 194-208). Springer Berlin
Heidelberg.

Hoos, H. H., & Stützle, T. (2000). Local search
algorithms for SAT: An empirical
evaluation. Journal of Automated
Reasoning, 24(4), 421-481.

Kastrati, M., & Biba, M. (2021). Stochastic
local search: a state-of-the-art
review. International Journal of
Electrical and Computer
Engineering, 11(1), 716.

Kawu, A. J., Wajiga, G. M., & Malgwi, Y. M.
(2024). Comparison of the Empirical
Performance of Minisat and GSAT
Solvers on SATLIB Benchmark. BIMA

JOURNAL OF SCIENCE AND
TECHNOLOGY (2536-
6041), 8(1B), 197-205.

Li, C. M., & Huang, W. Q. (2005).
Diversification and determinism in local
search for satisfiability. In Theory and
Applications of Satisfiability Testing: 8th
International Conference, SAT 2005, St
Andrews, UK, June 19-23, 2005.

Proceedings 8 (pp. 158-172). Springer
Berlin Heidelberg.

Mengshoel, O. J., Yu, T., & Zeng, M. (2020).
Stochastic local search and machine
learning: From theory to applications
and vice versa. In ECAI 2020 (pp. 2919-
2920). IOS Press.

Muhammad, R., & Stuckey, P. J. (2006). A
stochastic non-CNF SAT solver.
In PRICAI 2006: Trends in Artificial
Intelligence: 9th Pacific Rim International
Conference on Artificial Intelligence
Guilin, China, August 7-11, 2006

Proceedings 9 (pp. 120-129). Springer
Berlin Heidelberg.

Peng, C., Xu, Z., & Mei, M. (2020). Applying
aspiration in local search for
satisfiability. PloS one, 15(4),

DOI: 10.56892/bima.v8i4B.1166

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

40

e0231702.https://doi.org/10.1371/journal.
pone.0231702

Reifenstein, S., Leleu, T., McKenna, T.,
Jankowski, M., Suh, M. G., Ng, E., ... &
Yamamoto, Y. (2023). Coherent
SAT solvers: a tutorial. Advances in

Optics and Photonics, 15(2), 385-441.

Selman, B., & Gomes, C. P. (2006). Hill-
climbing search. Encyclopedia of
cognitive science, 81(333- 335), 10.

Selman, B., & Kautz, H. A. (1993). An
empirical study of greedy local search for
satisfiability testing. In AAAI (Vol. 93,
pp.46-51).

./.https://doi.org/10.1371/journal.pone.0231702
./.https://doi.org/10.1371/journal.pone.0231702

