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ABSTRACT

This paper is a survey for the solvability and simplicity status of a permutation group G whose
order is of the form rp”, where r is any prime and p is odd prime. The group of this form can be
p-group or any group generated by wreath products of two permutation groups depending on the
value of rand p. The concept of p groups and wreath products of two permutation groups has been
applied to explore the groups of interest and later investigation has been carried out to test them

for the above stated status.
Keywords:
INTRODUCTION

The study as we know is focused on the
solvability and simplicity status of
permutation groups. This concept of
solvability and simplicity statuses are very
important in the theory of permutation
groups. The two concepts go hand in hand
with abelian groups which are also very
important concepts of the theory of groups
entirely. That is why the attention of
mathematicians focused on these two
statuses.

In order to understand the study so many
definitions are introduced, introducing also is
the famous Sylow’s Theorem. This is
because for a group theorist as someone put
it and we quote “Sylow’s Theorem is such a
basic tool, and so fundamental that it is used
almost without thinking, like breathing”.

Definition
The series of subgroups
Gy, G1,Gy,...,Gysuch  that G =G, >

Gp-1 2 Gpy D+ DGy D Gy = {1} where
G;/G;, is abelian, is called a solvable series.

Definition 1.2 (Milne, J.S, 2009)

A group G is solvable if there is a finite
collection of groups GyG;... G, such
that(1) = G, € G, S-S G, = G

where G; 2 G and G;,,/G;is abelian.If
|G| =1 then G is considered as solvable

group.

Definition A finite group is simple when its
only normal subgroups are the trivial
subgroup and the whole group.

Since the study is majorly on group and its
properties, we pause and state one of the
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fundamental theorems on group, i.e., Sylow’s
Theorem.

MATERIALS AND METHODS
Sylow’s Theorem 1.1 (Audu, 2003)

Let G be a group of order p®m, where p is a
prime, m > 1, and p does not divide m.
Then:

l. Syl,(G) # @, ie., Sylow p-
subgroups exists.

. All  Sylow p-subgroups are
conjugate in G, i.e., if p; and p,
are both Sylow p-subgroups, then
there is some g € G such that
p1 = gp.g~ L. In particular,
ny(6) = (G: Ng(P)).

1. Any p-subgroup of G is contained
in a Sylow p-subgroup.

IV.  n,(G) =1 modp.

WREATH PRODUCT (Audu, 2003)

The Wreath product of C by D denoted by W
= C wr D is the semi-direct product of P by D
so thatW = {(fd)|f € Pd € D} with
multiplication in W  defined as
(fid)(fody) = Af;™ (dydy)  for all
fifo € Pandd,d, € D. Henceforth we write
f d instead of (fd) for elements of W.

Theorem 1.2 (Audu, 2003)

Let D acton P as f4(8) = f(8d~1) where
f € Pd € Dandé € A. Let W be the group of
all juxtaposed symbols f d with f € Pd € D
and multiplication given by (fid;)(f2d,) =

flfzdl_l(dldz). Then W is a group called the
semi-direct product of P by D with the
defined action.

Based on the forgoing we note the following:

< If C and D are finite groups then the
wreath product W determined by an
action of D on a finite set is a finite
group of order [W| = |C|A.|D].

+« Pisanormal subgroup of Wand D is a
subgroup of W.

% The action of W on I' x A is given by

(aB)fd = (af(B)Bd)wherea €
Tandp € A.

We shall at this point identify the conditions
under which a subgroup will be soluble or
nilpotent and study them for further
investigation.

Theorem 1.3 (Thanos, 2006)

G is solvable if and only if G™ = 1, for
some n.

Proposition
Let G be solvableand H < G. Then

1. Hissolvable.
2. If H < G, then G/H is solvable.

Proof

Start from a series with abelian slices. G =
Go= Gy == G, = {1}. ThenH =
HNGy = HNG -2 HNG, =
{1}. When H is normal, we use the canonical
projection m: G - G/H to get G/H =
m(Gy) = - = 1(G,) = {1}; the quotients
are abelian as well, so G /H is still solvable.
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Theorem 1.5 (Milne, 2009)

A group G is solvable if and only if it has a
solvable series.

Thus; we give the following illustrations:

(i) G=

(18)(27)(36)(45)(14725836)(14)(23)(58)(67)(16385274)(16)(25)

(34)(78)(12345678)(12)(38), (47), (56)}
Hence D16 = H3 g HZ g H1 = (1)

Proposition 1.6

A group G is a direct product of subgroups
H,, H, if and only if

{(1), (48765), (47586), (46857), (45678), (132)
(132)(48765), (132)(47586), (132)(46857), (132)(45678), 123) G = H,H,
(123)(48765), (123)(47586), (123)(46857), (123)(45678)} b) H, N H, = {e}and

has the subgroups as follows;
Hy = (1)
Hy = {(1)(123)(132)}

H,
= {(1)(48765)(47586)(46857)(45678)}

H, = {(1)(48765)(47586)(46857)(45678), (132)

c) Everyelement of H; commutes with
every element of H,.

Proof

If G is the direct product of H; and H, , then
certainly (a) and (c) hold and (b) holds
because, for any g € H; N H,, the element
(9,9 Y)maps to e under (hy, hy) » hih,

(132)(48765), (132)(47586), (132) (46857), (132) (456785113 €quals to (e, e).

(123)(48765), (123)(47586), (123)(46857), (123)(45678)é0nverse|y

has a solvable series which is (1) = Hy <
H, < H; = G hence solvable by Theorem 2.3

(i) The dihedral group D,, is solvable
since D, = (p) = {1}
Let D1s be the Dihedral group of
Degree 8 given by:

Dys

(c) implies that (hq, h,) = hyh,
is @ homomorphism and (b) implies that it is
injective:

h1h2 =e = hl = hz_l € Hl n H2 = {e}
Finally, (a) implies that it is surjective.

Proposition 1.7

A group G is a direct product of subgroups

= {(1)(28)(37)(46)(15)(26)(37)(48)(15)(24)(68)(1753), (28641, H, if and only if

(17)(26)(35)(1357)(2468)(13)(48)(57)(18765432),

(18)(27)(36)(45)(14725836), (14)(23), (58)(67), (16385274)(16)(28) G = H,H,

(34)(78),(12345678),(12), (38), (47), (56)}

whose subgroups are as follows;
Hy = (1)

H, = {(1)(15)(26)(37)(48)} = (p)

LE

b) Hy N H, ={e}
C) H; and H, are both normal in G

Proof

Certainly, these conditions are implied by
those in proposition 1.5 and so it remains to

= {(1)(28)(37)(46)(15)(26)(37)(48)(15)(24)(68)(1753)(28645how that they imply that each element h, of

(17)(26)(35)(1357)(2468)(13)(48)(57)(18765432)

H,; commutes with each element h, of H, .
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Two elements h, and h, of G commute if and
only if their commutator

[hy, hy]1%L(hyhy) (hohy) ™Y . e but

(hihy)(hyhy) ™t = h1hzhl_1 hz_1
_ ((hahyhy ™). Ry
ke (hohy PR

Which is in H, because H, is normal and is
in H; because H; is normal. Therefore (b)
implies that [k, h,] = e.

Proposition 1.8
Any group of order ppnn where p is a prime,
is solvable.

Proof

We prove the proposition by induction on nn.
For nn = 0, the proposition is trivial. Let n >
1 and assume that the proposition is true for
rr<nn. Let G be a group of order ppnn. Then
by a Proposition, the centre C of G has order
ppss where s> 1. Then the order of GG/CC is
ppnn—ssand nn — ss<nn. By the induction
hypothesis G/C is solvable. Milne (2013).

RESULTS
Theorem 1.9
Let G be a group of order rp” where p is an
odd prime and k is an integer greater than or
equals to 2 (and that p and q are not
consecutive in any case), then

a) G is not simple.
b) G is Solvable

Proof

a) Itis clear by second Sylow theorem that
G has Sylow r-subgroups and Sylow

p-sub groups. By second Sylow
theorem

n, could be 1,p,p?,...,p" and n, =
1, implying that Syl, is normal
showing that G is not simple as
required.

b) Suppose G is a group of order rp”,
clearly G has Sylow r-subgroups and
Sylow p-subgroups for all odd prime
p. Let N be the Sylow r-subgroup of
G then N is unique (one) by Sylow
second theorem and hence normal in
G of prime order and solvable by
Proposition 1.8. Being N a normal
subgroup of G, it forms a factor group
G /N of order p” which is a p-group
and this subgroup is solvable by
Proposition 1.8. it follows that G is
solvable by Proposition 1.7

APPLICATION

Consider the permutation groups € and
D,

C; ={(1),(12)}, D, =
{(1),(3,4,5), (3,5,4)}acting on the sets S; =
{1,2}and A;= {3,4,5} respectively.

Let P =G ={f:0,— C}then|P| =
|Cy|*r =23 =8

We can easily verify that W, is a group with
respect to the operations

(fif2)61 = f1(61)f>2(61)whered; € A, .

The wreath product of C; and D, is given by
W, as follows:

gap> C1:=Group((1,2));
Group([ (1,2) 1)
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gap> bl::Group((3,4,5)); gap> IsSimple(w2);

Group([ (34,5 ] false
gap> W1:=WreathProduct(C1,D1); gap> quit;
Group([ (1,2), (34), (5,6), (1,3,5)(2,4,6) I) : :
gap> Order(W1); Consider the permutation groups Czand
24 D3
gap> |SS|mp|e(Wl), CS — {(1)' (12)}’
false D,
H . ={(1),(11312111098765432),(11210864 21311975 3),
gap> ISNIIpOtent(Wl)’ (111852129631310 74),(11062117312841395),(19412 7210513 83116),
false (18293104115126137),(17136125114103928),(16113813510271249),
. (15913481237112610),(14710133691225811),(13579111324681012),
gap> quit; (12345678910111213)}
_ _ acting on the sets S;={1,2}andA;=
lc;on3|der the permutation groups C,and {1,2,3,4,5,6,7,8,9,10,11,12,13} respectively.
2 Let P = ("™ ={f:A3— C3}then|P| =
¢ = {(1),(12)}, |G| = 21 = 8192
D,

We can easily verify thatWsis a group with

= {(1), (37654), (36475), (35746), (34567)} respect to the operations

acting on the sets S, ={1,2}andA,=
{3,4,5,6,7} respectively. (f1f2)61 = f1(61)f2(61)wheredy € A, .
Let P =C(," ={f:A,— C,}then|4P| =

IC, |22 = 25 = 32 The wreath product of €5 and Ds is given by

W5 as follows:
We can easily verify that W,is a group with

respect to the operations gap> C3:=Group ((1,2));

Group ([(1,2) ])
(f1f2)81 = f1(61)f2(81)whered; € A, . gap>
D3:=Group((3,4,5,6,7,8,9,10,11,12,13,14,15
The wreath product of C, and D, is given by ):
W, as follows: Group ([ (3,4,5,6,7,8,9,10,11,12,13,14,15)])
gap> C2:=Group((1,2)); gap> W3: =WreathProduct(C3, D3);
Group ([(1.2) ]) Group (I (1,2),
gap> D2:=Group((3,4,5,6,7)); (1,3,5,7,9,11,13,15,17,19,21,23,25)
Group ([ (3,4,5,6,7)]) (2,4,6,8,10,12,14,16,18,20,22,24,26)])
gap> W2:=WreathProduct(C2,D2); gap> Order(W3);
Group ([(1.2), (34), (5.6), (7.8), (9,10), 106496
(1.3,5,7,9)(2,4,6,8,10) ]) gap> IsSolvable(W3);
gap> Order(W2); true
160 gap> IsSimple(w3);
gap> IsSolvable(W?2); false
true gap> quit;
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Consider the permutation groups €, and
D,

€, = {(1),(123), (132)},
D,

= {(1), (48765), (47586), (46857), (45678)}

acting on the sets S, ={1,2,3}andA,=
{4,5,6,7,8} respectively.

Let P =C" ={f:A,— C,)then|P| =
|C,|2+ = 35 = 243

We can easily verify that W,is a group with
respect to the operations

(f1f2)61 = f1(61)f2(61)whered; € A, .

The wreath product of C, and D, is given by
W, as follows:

Consider the permutation groups Csand D

gap> C4:=Group((1,2,3));

Group([ (1,2,3) ])

gap> D4:=Group((4,5,6,7,8));

Group([ (4,5,6,7,8) 1)

gap> W3:=WreathProduct(C4,D4);
Group([ (1,2,3), (4,5,6), (7,8,9), (10,11,12),
(13,14,15),
(1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15) ])
gap> Order(W4);

1215

gap> IsSolvable(W4);

true

gap> IsSimple(w4);

false

gap> quit;

Cs = {(1),(123), (132)},
Ds ={(1),(41098765),(49751086),(48596107),(47106958),(46810579),
(45678910)}

acting on the sets S ={1,2,3}andAs=
{4,5,6,7,8,9,10} respectively.

Let P =C" ={f:As— Cs}then|P| =
|Cs|%s = 37 = 2187

We can easily verify that W;is a group with
respect to the operations

(f1f2)61 = f1(61)f2(61)whered; € A, .

The wreath product of Cs and Ds is given by
W5 as follows:

gap> C5:=Group((1,2,3));

<permutation group of size 15309 with 8
generators>

gap> Order(W5);

15309

gap> IsSolvable(W5);

true

gap> IsSimple(wb5);

false

gap> quit;

Consider the permutation groups Ceand
Dg

Cs

Group ([ (1,23)])

gap> D5: =Group((4,5,6,7,8,9,10));
Group ([ (4,5,6,7,8,9,10) ])

gap> W5:=WreathProduct(C5,D5);

={(1),(1111098765432),(1108642119753),(1963118521074),
(1841173106295),(1728394105116),(1611510493827),
(1592610371148),(1471025811369),(135791124 6 810),
(12345678910 11)},
Dy = {(1), (12 13)}
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acting on the sets S¢ =
{1,2,3,4,5,6,7,8,9,10,11}andAs= {12,13}
respectively.

Let P =" = {f:A¢— Cglthen|P| =
|Cs|% = 112 = 121

We can easily verify that G,is a group with
respect to the operations

(f1f2)01 = f1(61)f2(861)whered; € A, .

The wreath product of C, and D, is given by
W, as follows:

gap> C6:=Group((1,2,3,4,5,6,7,8,9,10,11));
Group([ (1,2,3,4,5,6,7,8,9,10,11) ])

gap> D6:=Group((12,13));

Group([ (12,13) ])

gap> W6:=WreathProduct(C6,D6);
Group([(1,2,3,4,5,6,7,8,9,10,11),
(12,13,14,15,16,17,18,19,20,21,22),
(1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)
(8,19)(9,20)(10,21)(11,22) 1)

gap> Order(W6);

242

gap> IsSolvable(W6);

true

gap> IsSimple(w6);

false

Consider the permutation groups €, and
D,

G

Let P =C," ={f:A,— C,}then|P| =
|C,1%7 = 11° = 161,051

We can easily verify that W-is a group with
respect to the operations

(f1f2)01 = f1(61)f2(61)whered; € A, .

The wreath product of C; and D, is given by
W., as follows:

gap> C7:=Group((1,2,3,4,5,6,7,8,9,10,11));
Group ([ (1,2,3,4,5,6,7,8,9,10,11) ])

gap> D7:=Group((12,13,14,15,16));

Group ([ (12,13,14,15,16) ])

gap> Order(W7);

gap> W7:=WreathProduct(C7,D7);
<permutation group of size 805255 with 6
generators>

gap> Order(W7);

805255

gap> IsSolvable(W?7);

true

gap> IsSimple(w7);

false

gap> quit;

Consider the permutation groups Cgand
Dg

Cg
={(1),(113121110 9876543 2), (11210 8 6 4 21311975 3),( 111852129 6 31310
74),(1106 21173128413 95),(19412721051383116),(1829310411 512
6137),(17136125114103928),(16113813510271249),(15913481237
112610),(14710133691225811),(13579111324681012),(12345678
910111213)}

={(1),(1111098765432),(1108642119753),(196 3118521807 4),
( 1 8 411 7 310 6 2 9 5)' ( 1 7 2 8 3 9 410 511 6),( 1 611 510 4 9 3 8 2 7), = {(1), (1418171615), (1417151816), (1416181517), (1415161718)}

(1592610371148),(1471025811369),(1357911246810),

(1234567891011)},
D,

={(1),(1216151413), (1215131614), (1214161315), (1213141516)}

acting on the sets S, =
{1,2,3,4,5,6,7,8,9,10,11}andA,=
{12,13,14,15,16} respectively.

acting on the sets Sg =
(1,2,3,4,5,6,7,8,9,10,11}andAg=
{12,13,14,15,16} respectively.

Let P = Cg® = {f: Ag— Cg}then|P| =
|Cg|% = 135 = 371,293
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We can easily verify that W is a group with
respect to the operations

(f1f2)01 = f1(61)f2(861)whered; € A, .

The wreath product of C; and D, is given by
W., as follows:

gap>
C8:=Group((1,2,3,4,5,6,7,8,9,10,11,12,13));
Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13) ])
gap> D8:=Group((14,15,16,17,18));
Group([ (14,15,16,17,18) ])

gap> W8:=WreathProduct(C8,D8);
<permutation group of size 1856465 with 6
generators>

gap> Order(W8);

1856465

gap> IsSolvable(W8);

true

gap> IsSimple(w8);

false

gap> quit;

DISCUSSION

It can be seen from the result that any group
G whose order is rp™ for any prime r and odd
prime p;

a) Is solvable for all values of pand r.
b) Is not simple.
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