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Abstract  

Stock market volatility affects business investment and economic growth showing market 
inefficiency. However, the degree of volatility presence in the stock market would lead 
investors to demand a higher risk premium, creating higher cost of capital which impedes 
investment and slows economic development. Therefore this work investigates the nature and 
behavior of Stock Returns Volatility of the Nigerian Stock Exchange (NSE) using the 
Generalised Autoregressive Conditional Heteroskedasticity (GARCH) model- GARCH (1,1) 
Model- and the Glosten, Jagannathan and Runkle- Generalized Autoregressive Conditional 
Heteroskedastic GARCH Model - GJR-GARCH(1,1) model. Monthly All Share Indices of 
the Nigerian Stock Exchange (NSE) for the periods of 1stJanuary 1985 to 31stDecember 2011 
provided the 324 time series sample data for investigating volatility persistence and 
asymmetric properties of the series. The results of GARCH (1,1) model indicate evidence of 
volatility clustering in the NSE returns series. Also, the results of the GJR-GARCH (1,1) 
model shows the existence of leverage effects in the series. Finally, the Generalized Error 
Distribution (GED) shape test reveals leptokurtic returns distribution. Overall results from 
this study provide evidence to show volatility persistence, fat- Tail distribution, and leverage 
effects for the Nigeria stock returns data. Base on the findings in this work, investors are at 
greater risk if the market is not modernized to improve efficiency. 
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Introduction 

Volatility is the standard deviation of the 
change in value of a financial instrument 
with a specific time horizon. It is often 
used to quantify the risk of the instrument 
over that time period. Volatility is 
considered the most accurate measure of 
risk and by extension, of returns, which 
implies that the higher the volatility, the 
higher the risk and the reward. Volatility 
of returns is a key issue for both 
researchers in financial economies and 
analysts in the financial markets. The price 
of stocks and other assets depend on the 

expected volatility (covariance structure) 
of returns. Banks and other financial 
institutions make volatility assessments as 
a part of monitoring their risk exposure. 
Numerous studies have documented 
evidence showing that stock returns 
exhibit the phenomenon of Volatility 
Clustering, Leptokurtosis and Asymmetry. 
Volatility clustering occurs when large 
Stock price changes are followed by large 
price change, of either sign, and small 
price changes are followed by periods of 
small price changes. Leptokurtosis means 
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that the distribution of stock returns is not 
normal but exhibits fat-tails. In other 
words, Leptokurtosis signifies that high 
probabilities for extreme values are more 
frequent than the normal law predict in a 
series. Asymmetry, also known as leverage 
effects, means that a fall in return is 
followed by an increase in volatility 
greater than the volatility induced by an 
increase in returns. This implies that more 
prices wander far from the average trend in 
a crash than in a bubble because of higher 
perceived uncertainty (Mandelbrot, 1963; 
Fama, 1965; Black, 1976). These 
characteristics are perceived as indicating 
a rise in financial risk, which can 
adversely affect investors’ assets and 
wealth. For instance, volatility clustering 
makes investors more averse to holding 
stocks due to uncertainty. Investors in turn 
demand a higher risk premium in order to 
insure against the increased uncertainty. A 
greater risk premium results in a higher 
cost of capital, which then leads to less 
private physical investment. Modeling 
volatility is an important element in 
pricing equity, risk management and 
portfolio management. Stock prices reflect 
all available information and the quicker 
they are in absorbing accurately new 
information, the more efficient is the stock 
market in allocating resources. Modeling 
volatility will improve the usefulness of 
stock prices as a signal about the intrinsic 
value of securities, thereby, making it 
easier for firms to raise fund in the market. 
Also, detection of stock returns volatility-
trends would provide insight for designing 
investment strategies and for portfolio 
management. Hence, it is important to 
understand the behavior of the NSE 

returns volatility. The studies of 
Mandelbrot (1963), Fama (1965) and 
Black (1976) highlight volatility 
clustering, leptokurtosis, and leverage 
effects characteristics of stock returns. 
Engle (1982) introduced the autoregressive 
conditional Heteroskedasticity (ARCH) to 
model volatility by relating the conditional 
variance of the disturbance term to the 
linear combination of the squared 
disturbances in the recent past. Bollerslev 
(1986) generalized the ARCH model by 
modeling the conditional variance to 
depend on its lagged values as well as 
squared lagged values of disturbance. 
Since the works of Engle (1982) and 
Bollerslev (1986), various variants of 
GARCH model have been developed to 
model volatility. Some of the models 
include EGARCH originally proposed by 
Nelson (1991), GJR-GARCH model 
introduced by Glosten, Jagannathan and 
Runkle (1993), Threshold GARCH 
(TGARCH) model due to Zakoian (1994). 
Following the success of the ARCH family 
models in capturing behaviour of 
volatility, Stock returns volatility has 
received a great attention from both 
academies and practitioners as a measure 
and control of risk both in emerging and 
developed financial Markets. Concerning 
the effectiveness of the  ARCH family 
models in capturing volatility of financial 
time series, Hsieh (1989) found that 
GARCH (1,1) model worked well to 
capture most of the stochastic 
dependencies in the times series. Based on 
tests of the standardized squared residuals, 
he found that the simple GARCH (1,1) 
model did better at describing data than a 
previous ARCH(1,2) model also estimated 
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by Hsieh (1989). Similar conclusions were 
reached by Taylor (1994), Brook and 
Burke (2003) and Olowe (2009). 

 
Methodology 

Source of Data 

The data for this study consist of the 
Monthly All Share Index (ASI) of the 
NSE. The ASI is a value weighted index 
made up of the listed equities on the 
Exchange. The period under study begins 
from January 1985 and ends on December 
2011. This yields a total of 324 time series 
observations. The data were obtained from 
the NSE and transformed to Market 
returns as individual time series variables. 
Market returns are proxies by the log 
difference change in ASI of the NSE thus:  
 

Rmt = Ln (Pt – Pt-1)               (1) 
 

Where, Rmt is monthly returns for period 
Pt and Pt-1 are the All Share 1ndices for 
Months t and t-1. Ln is Natural Logarithm. 
The addictive property implies that 
monthly returns are equal to the sum of all 
daily returns during the month. As a result, 
statistics such as the mean and variance of 
lower frequency data are easier to derive 
from higher frequency data. 

 

Stylized Facts about Stock Returns 
Volatility 

A number of stylized facts about volatility 
of financial asset prices have emerged over 
the years, and been confirmed in numerous 
studies. A good volatility model, then, 
must be able to capture and reflect these 
stylized facts. In this, we document some 
of the common features of stock asset 
price volatility process. 

Volatility Clustering 

The clustering of large moves and small 
moves (of either sign) in the price process 
was one of the first documented features of 
the volatility process of asset prices. 
Mandelbrot (1963) and Fama (1965) both 
reported evidence that large changes in the 
price of an asset are often followed by 
other large changes and small changes are 
often followed by small changes. This 
behavior has been reported by numerous 
other studies, such as Baillie et al. (1996) 
and Schwert (1989). The implication of 
such volatility clustering is that volatility 
shocks today will influence the expectation 
of volatility many periods in the future.   

Persistence Characteristics of Volatility  

Volatility is said to be persistent if today’s 
return has a large effect on the forecast 
variance many periods in the future. A 
further measure of persistence in a 
volatility model is the half life of 
volatility. This is defined as the time taken 
for the volatility to move half way back 
towards its unconditional mean following 
deviation from it. Engle et al. (2001).To 
make a precise definition of volatility 
persistence, let the expected value of the 
variance of returns k periods in the future 
be defined as  

ℎ௧ା௞/௧ = ௧ା௞ݎ)௧ܧ − ݉௧ା௞) 2           (2) 

The forecast of future volatility then will 
depend upon information in today’s 
information set such as today’s returns. 
Volatility is said to be persistent if today’s 
return has a large effect on the forecast 
variance many periods in the future. 
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Taking partial derivatives, the forward 
persistence is:   /

2/
t k t

t k t
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        (3) 

This is dimensionless number as squared 
returns and conditional variance are in the 
same units. 
For many volatility models this declines 
geometrically but may be important even a 
year in the future. A closely related 
measure is the cumulative persistence, 
which is the impact of a return shock on 
the average variance of the asset return 
over the period from t  to t k . It is 
defined as: 
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The response of long – term option prices 
to volatility shocks suggests that volatility 
models should have significant cumulative 
persistence a year in the future. 

Mean Reverting Nature of Volatility 

Volatility clustering implies that volatility 
comes and goes. Thus a period of high 
volatility will eventually give way to more 
normal volatility and similarly, a period of 
low volatility will be followed by a rise. 
Mean reversion in volatility is generally 
interpreted as meaning there is a normal 
level of volatility to which volatility will 
eventually return. Very long run forecasts 
of volatility should all converge to this 
same normal level of volatility, no matter 
when they are made. While most 
practitioners believe this is a characteristic 
of volatility, they might differ on the 
normal level of volatility and whether it is 
constant over all time or its institutional 

changes. More precisely, mean reversion 
in volatility implies that current 
information has no effect on the long run 
forecast. Hence  

lim
k

p
 

/
0,

t k t 
  for all t.                                              

(5) 

Which is more commonly expressed as 
2

/ ,l im t k t
k

fo rp h 
 

   all t.                                         

(6) 

Options prices are generally viewed as 
consistent with mean reversion. Under 
simple assumptions on option pricing, the 
implied volatilities of long maturity 
options are less volatile than those of short 
maturity options. They usually are closer 
to the long run average volatility of the 
asset than short maturity options. 

Possibility of Asymmetric Impact of 
Innovations on Volatility 

Many proposed volatility models impose 
the assumption that conditional volatility 
of the asset is affected symmetrically by 
positive and negative innovations. The 
GARCH (1,1) model, for example, allows 
the variance to be affected only by the 
square of lagged innovation; completely 
disregarding the sign of that innovation. 
For equity returns it is particularly unlikely 
that positive and negative shocks have the 
same impact on volatility. This asymmetry 
is sometimes ascribed to leverage effect 
and sometimes to a risk Premium effect. 
As the price of stock falls, its debt – to – 
equity ratio rises, increasing the volatility 
of returns to equity holders. In the latter 
story, news of increasing volatility reduces 
the demand for a stock because of risk 
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aversion. The consequent decline in stock 
value is followed by the increased 
volatility as forecast by the news. Black 
(1976), Chritie (1982), Nelson (1991), 
Glosten et al. (1993) and Engle and Ng 
(1993) all find evidence of volatility being 
negatively related to equity returns. In 
general, such evidence has not been found 
for exchange rates. For interest rates a 
similar asymmetry arises from the 
boundary of zero interest rates. When rates 
fall, (prices increase) they become less 
volatile in many models and in most 
empirical estimates, see Engle Ng and 
Rothschild, Chan et al. (1990) and Brenner 
et al. (1996). In diffusion models with 
stochastic volatility, this phenomenon is 
associated with correlation between the 
stock to returns and the shock to volatility. 
The asymmetric structure of volatility 
generates skewed distributions of forecast 
prices and under simple derivative pricing 
assumptions; this gives option implied 
volatility surfaces which have a skew. That 
is, the implied volatilities of out – of – the 
money put options are higher than those of 
at – the – money options, which in turn are 
higher than the implies of in the money 
puts. 

Fat Tails Probabilities 

It is well established that the unconditional 
distribution of asset returns has heavy tails. 
Typical kurtosis estimates range from 4 to 
50 indicating very extreme non – 
normality. This is a feature that should be 
incorporated in any volatility model. The 
relation between the conditional densities 
is Gaussian, and then the unconditional 
density partially reveals the source of the 
heavy tails. If the conditional density is 

Gaussian, then the unconditional density 
will have excess kurtosis due simply to the 
mixture of Gaussian densities with 
different volatilities. However, there is no 
reason to assume that the conditional 
density itself is Gaussian, and many 
volatility models assume that the 
conditional density is itself fat tailed, 
generating still greater kurtosis in the 
unconditional density. Depending on the 
dependence structure of the volatility 
process, the returns may still satisfy 
standard extreme value theorems.  

ARCH (p) Model and Its Properties 

Engle (2001) specifies that a good 
volatility model should reflect and capture 
the stylized facts of asset returns. The 
simplest model for studying volatility in 
univariate time series is the Autoregressive 
Conditional Heteroskedastic Model of 
order p, denoted ARCH (p). The model 
was originally introduced by Engle (1982). 
For time series  tr  the ARCH (p) model 

Specification is: 

(3.06 )t t ar                                                                                                               

(7a) 

    ൫ߝ௧หߝ௧ିଵ,ߝ௧ିଶ … … . ൯~ܰ(0, ℎ௧)    

௧ߝ  =
ඥℎ௧ߤ௧           ߤ௧,~(0,1)ܰܫܫ                                                                     

2 2

0 0 1
1

( ) (3.07)
p

t i t i t
i

Lh      


     
 

Where,  
 ௧ୀ  is the innovation/shock at day t andߝ

follows heteroscedastic error process 
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௧ݎ    = Asset returns at day t 
ߤ    =  conditional mean of   tr  

   ℎ௧ = Volatility at day t i.e. Conditional 
variance 
௧ି௜ߝ   

ଶ = Squared innovation at day t – i  
The time varying conditional variance is 
postulated to be a linear function of the 
past squared innovations. A sufficient 
condition for the conditional variance to be 
positive is that the parameters of the model 
should satisfy the following constraint: 
଴ߙ > 0, ଵߙ > 0, … ௣ߙ > 0. 

GARCH (p, q) Model and Its Properties 

In practice, it is often found that large 
number of lag p, and large number of 
parameters, are required to obtain a good 
model fit of ARCH (p) model. Bollerslev 
in 1986 proposed Generalized ARCH or 
GARCH (p, q) model to solve these 
problems with the following formulation:   

0
2

1 1
2 2 (9)0 1 111

t

p q
h hi t iit i

i i

h h ht p t t qt p qt

 
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    
 

        
 

Where, 

ℎ௧ is the volatility at day t – i 

଴ߙ > 0  

௜ߙ ≥ 0  for i = 1, ----,p 

௜ߚ ≥ 0 for i = 1,---, q 

௧ିଵߝ
ଶ  ܽ݊݀ ℎ௧ are as previously defined. 

Under GARCH (p, q) model, (GARCH p, 
q is the generalized ARCH p,q model of 
order or lag p and q)  the conditional 

variance of ߝ௧ , ℎ௧, depends on the squared 
innovations in the previous ‘p’ periods, 
and the conditional variance in the 
previous ‘q’ periods. The GARCH models 
are adequate to obtain a good volatility 
model fit for financial time series. 
Rearranging the GARCH (p, q) model by 
defining ߤ௧ = ௧ߝ

ଶ − ℎ௧, it follows that  

௧ߝ
ଶ

= ଴ߙ 

+ (ܮ)ߙ) + ௧ߝ(ܮ)ߚ 
ଶ − ௧ߤ(ܮ)ߚ 

+  ௧)                                                           (10)ߤ 

Where, L is the backshift operator and 

(ܮ)ߙ = ܮଵߙ + ⋯ + ௣ܮ௣ߙ   

(ܮ)ߚ = ܮଵߚ  + ⋯ +  ௤ܮ௤ߚ

Which is an ARMA (max (p, q), q) model 
for ߝ௧

ଶ. By standard argument, the model is 
covariance stationary if and if all the roots 
of (1 − (ܮ)ߙ −  lie outside the unit ((ܮ)ߚ
circle. The ARMA representation in (10) 
allows for the use of time series techniques 
in the identification of the order of p and q. 
For the sake of simplicity however, we are 
going to examine the GARCH (1, 1) 
model and investigate all the features of 
stylized facts exhibited by the model.   
The standard GARCH (1, 1) model 
process is specified as:  

ℎ௧
= ଴ߙ + ௧ିଵߝଵߙ 

ଶ

+                                                                                         ଵℎ௧ିଵߚ 

Where,  

 ଵ measures the extent to which aߚ
volatility shock today feeds through into 
the next period’s volatility. 
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ଵߙ)  ଵ)  measures the rate at which thisߚ +
effect dies over time 

ℎ௧ିଵ  is the volatility at day t -1. The 
conditional variance equation of GARCH 
(1,1) model contains a constant term and 
news about volatility from the previous 
period measured as the lag of previous 
term squared residuals. 

GJR-GARCH Model 

Another GARCH variant that is capable of 
modeling leverage effects is the threshold 
GARCH (GJR-GARCH) model, which 
has the following form: 

௧ߪ
ଶ =  ߱ +  ∑ ௧ି௜ߝ௜ߙ

ଶ +௣
௜ୀଵ

∑௣
௜ୀଵ ௜ܵ௧ି௜ߛ ௧ି௜ߝ

ଶ + ∑ ௝ߚ
௤
௝ୀଵ ௧ି௝ߪ

ଶ − − −
(12) 

Where,          1

1

1 0
0 0

t
t i

t

if
ifS 







  
 

i =leverage effects coefficient. (if 0
i   

indicates presence of leverage effect.) that 

is depending on whether t i 
is above or 

below the threshold value zero, 2

t i 
 has 

different effects on conditional variance 
2

t : when t i 
is positive, the total 

effects are given by 2

i t i  
; when t i 

 is 

negative, the total effects are given by 

  2 .i t ii  
  so one would expect 

i  to 

be positive for bad news to have larger 
impacts. This model is also known as the 
GJR model (Glosten, Jagannathan and 
Runkle, 1993). 
             
Empirical Analysis 

Data Characteristics 

Figure 1 presents the pattern of log level 
data series of the NSE for the period under 
review (January 1985 to December 2011). 
The log level data show no tendency to 
return to its mean indicating the need for 
differencing.  
 

                                         
                                                      Figure1: The pattern of Log level data of NSE 
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                        Fig. 2: plot of the first difference of the log of the data.NSE Return Series 

Figure 2: shows sign of returning to its mean suggesting that the series are weakly stationary. The clustering of 
large moves and small moves (of either sign) in the returns process was one of the first documented features of 
the volatility process of asset returns. Mandelbrot (1963) and Fama (1965) both reported evidence that large 
changes in the price of an asset are often followed by other large changes and small changes are often followed 
by small changes. Also displays the monthly returns on the Nigerian Stock Exchange Index over a twenty two 
year period and shows evidence that the volatility of returns varies over time. The implication of such volatility 
clustering is that volatility shocks today will influence the expectation of volatility many periods in the future.  
 

                      
                                                  Fig 3: Histogram of the series  

From Figure 3, we see that the NSE stock returns distribution is peaked confirming the evidence of non-normal 
distribution. Peaked distribution is a sign of recurrent wide changes, which is an indication of uncertainty in the 
price discovery process. The visual representation above suggest that the error terms may not likely be normally 
distributed as there are some points that are further apart, not evenly distributed or spread and this may likely  
resulted in high kurtosis (Kurtosis greater than 3 of normal distribution) which is another characteristics of 
financial returns. In other words, if the points of errors are not normally distributed, the skewness will be 
different from zero and the distribution will be asymmetrical. Most of the time the leverage effects of financial 
time series resulted from the asymmetrical effect produced from the skewness of the distribution. 

Unit Root and Stationarity Test for the Stock Returns 

Statistical test of the null hypothesis that a time series is non-stationary against the alternative that it is 
stationary are called UNIT ROOT test. Table 1 describes the ADF and KPSS test result of the critical 
levels and the test statistic. 
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                                        Table 1: ADF and KPSS Test Results 

 
STOCK 
RETURNS  

CRITICAL LEVEL (ADF) CRITICAL LEVEL (KPSS) 
1% 5% 10% 1% 5% 10% 
-3.48 -2.89 -2.57 0.741 0.463 0.348 
TEST STATISTIC           -5.83645 TEST STATISTIC          0.0162492 

 

The ADF statistic test the null hypothesis for the presence of unit root against the alternative 
of no unit root and the decision rule is to reject the null hypothesis when the value of the test 
statistic is less than the critical value. The KPSS statistic test the null hypothesis for 
stationarity against the alternative of non-stationarity and the decision rule is to accept the 
null hypothesis when the value of the test statistic is less than the critical value. The result of 
the ADF and KPSS test shows that the stock returns are stationary. 

     Table 2 Portmanteau Test  

TEST RETURNS SQUARED RETURNS 
LJUNGBOX 64.9384 58.8013 
P-VALUE 0.0002 0.0013 

 

The null hypothesis of no autocorrelation cannot be accepted and that we conclude that there 
is low autocorrelation in the returns. The autocrrelation for the returns are much higher than 
those of squared return which is consistence with the literature for the characteristics of 
financial data suggesting  the presence of conditional heteroskedasticity.  We conclude that 
there are weak autocorrelation in the returns. 

Jaque Bera Test for Normality 

To achieve the first objective of the research, we examine the characteristics of unconditional 
distribution of stock returns. This will enable us to explore and explain some stylized facts 
embedded in the financial returns. Jaque Bera normality test is used to demonstrate this and 
the results are given in Table 4 and 5.  

                          Table 3: Jaque - Bera Test for Normality     

Mean 0.0160928 
Maximum 0.322212 
Minimum -0.319822 
Std. Dev. 0.0630272 
Skewness -0.33044 
Kurtosis 5.67811 
Jaque Berra Test  343.0862 
P value 0.0000 

  
The results in Table 3 shows that small positive average returns of about one – thousandth of 
a percent will be recorded for stock return. The skewness coefficient indicates that the returns 
distribution is negatively skewed; a common feature of equity returns. Finally, the kurtosis 
coefficient, which is a measure of the thickness of the tails of the distribution, is very high. 
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This is one of the stylized facts known in the early days of volatility modeling, and also from 
Jaque – Berra test, the hypothesis of normality is strongly rejected.      

Model Checking 

Table 4 Result for no Remaining ARCH Effect test Residuals 
F-TEST P-VALUE 
1.6683 0.1974 
 

In Table 4, the null hypothesis that there is no ARCH effects remaining at lag is accepted since the p – value is 
greater than 0.05.  Therefore, the models are adequate. 

 
 Table 5: Results of ARCH LM Test for GARCH (1, 1) Residuals 

LAGS T-STATISTICS P-VALUES 
Lag 1 0.3435 0.5578 
Lag 2 0.5387 0.7639 
Lag 3 0.5418 0.9096 

 

In Table 5 indicate that, the null hypothesis of no GARCH (1,1) effects remaining at lag 1, 
lag 2 and lag 3 are  accepted. Since the p- values are greater than 0.05. Therefore we 
concluded that the models are adequate. The model is adequate, and then the standardized 
squared residuals should be serially uncorrelated. 

 

 

                             Figure 4: GARCH (1, 1) Residuals Squares of Returns 

Figure 4 above shows that there is little or low correlation observed in the squared residuals 
of the GARCH (1, 1) returns.  
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     Figure 5 Estimated Conditional Volatility of the Returns Using GARCH (1, 1) 

The plot of Figure 5 clearly shows that the returns series mimics the estimated conditional volatility. 

 
              Table 6 Empirical Results of ARCH, GARCH (1, 1), and GJR-GARCH Models  
 

Parameters         Coefficient               Std Error                   T. Statistics                Significance 
 
Mean                   0.0210142324           0.001791231                  11.73172                  0.00000000 
Constant (α0 )      0.000178622           0.0000646324                 2.7637                    0.00572 
ARCH (α1)           0.446621                 0.0700685                       6.3741                   0.00048494 
GARCH (β1)        0.553379                0.0464477                        11.9140                  0.00000000 
(α1 + β1)                1.000000 
GJR GARCH (γ)    0.0473161               0.0776136                      0.6096                      0.54216 
 

 

The results presented in Table 6 shows that 
the coefficient of the ARCH effect (α1) is 
at statistically significant level. This 
indicates that news about volatility from 
the previous t periods has an explanatory 
power on current volatility. Similarly, the 
coefficient of the lagged conditional 
variance (β1) is significantly different from 
zero, indicating the presence of volatility 
clustering in NSE return series. The sum 
of (α1 + β1) coefficients is unity, 
suggesting that shocks to the conditional 
variance are highly persistent i.e. (α1 + β1) 
= 1 implies indefinite volatility persistence 
to shocks over time. This implies that wide 
changes in returns tend to be followed by 
wide changes and mild changes in returns 
tend to be followed by mild changes in 

volatility in volatility clustering. A major 
economic implication of this finding for 
investors of the NSE is that stock returns 
volatility occurs in cluster and as it is 
predictable. We also notice that 
asymmetry (gamma) coefficient γ1 is 
positive. The sign of the gamma reflects 
that a negative shock induce a larger 
increase in volatility greater than the 
positive shocks. It also implies that the 
distribution of the variance of the NSE 
returns is right skewed, implying greater 
chances of positive returns than negative. 
The positive asymmetric coefficient is 
indicative of leverage effects evidence in 
Nigeria stock returns. However, theory 
expects parameters α0 and α1 to be higher 
than zero (0), and β1 to be positive to 
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ensure that the conditional variance δ2
t is 

non-negative. The parameters α0 and α1 are 
more than 0, and β1 is positive. Thus, the 
GARCH (1, 1) seems quite good for 
explaining the behavior of stock returns 
volatility in Nigeria. 
           
Conclusion and Recommendation 

This work investigated the behavior of 
volatility of stock market returns in 
Nigeria using GARCH (1, 1) and the GJR-
GARCH (1, 1) models. Volatility 
clustering, leptokurtosis and leverage 
effects were examined for the NSE returns 
series from January 1985, to December 
2011. The results from GARCH (1, 1) 
model show that volatility of stock returns 
is persistent in Nigeria. The result of GJR-
GARCH (1, 1) model shows the existence 
of leverage effects in Nigeria stock returns. 
Finally, volatility persistence in NSE 
return series is clearly indicated in the 
unity of ARCH and GARCH parameter 
estimates (α1 + β1) = 1 implying indefinite 
volatility persistence to shocks over time. 
Overall results from this study provide 
evidence to show volatility persistence, 
leptokurtic distribution and leverage 
effects and volatility persistence for the 
Nigeria stock returns data. These results 
are in tune with international evidence of 
financial data exhibiting the phenomenon 
of volatility clustering, fat-tailed 
distribution and leverage effects. The 
results also support the evidences of 
volatility clustering in Nigeria provided by 
Ogum, et al. (2005); existence of leverage 
effects in Nigeria stock returns provided 
by Okpara and Nwezeaku (2009). 
 
 

Recommendation 

Volatility of returns should be a key issue 
for both researchers in financial economics 
and analysts in the financial markets. Since 
the price of stocks and other assets 
depends on the expected volatility 
(covariance structure) of returns, Banks 
and other financial institutions most make 
volatility assessments a mandatory part of 
monitoring their risk exposure. Also, 
detection of stock returns volatility-trends 
would provide insight for designing 
investment strategies and for portfolio 
management.                          
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