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Abstract   

Currency in circulation is the outstanding amount for notes and coins circulated in the 
economy and they are the most liquid monetary aggregate. Currency in circulation (CIC) 
accounts for approximately seventy percent of reserve money in Nigeria. This research is 
conducted to model and forecast currency in circulation in Nigeria from 2006 to 2015 with 
different types of ARIMA family models. ARIMA (1, 1, 0) served as the best model among 
the 12 postulated ARIMA models because it has the least values of Akaike information 
criteria (AIC) and Bayesian information criteria (BIC). And also the research proposed the 
ARIMA model for currency in circulation (CIC), the model evaluate the performance and 
forecast three years observation (i.e from 2016 to 2018) of the process and the results shows 
an increase  of currency in circulation in Nigeria from 2016 to 2018.   
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Introduction         

Currency in circulation (CIC) refers to 
notes and coins held outside banks and are 
the most liquid monetary aggregate. 
Currency in circulation, together with 
demand deposits is a component of narrow 
money movements, of which are of 
interest to policy makers. Currencies in 
circulation (CIC) dynamics are often 
considered as an indicator for monetization 
or demonetization of the economy. Two 
most relevant indicators showing the 
relative significance of currency in 
circulation(CIC) in any economy are (1) 
share of currency in circulation(CIC) in 
money supply and (2) ratio of currency in 
circulation (CIC) to nominal gross 
domestic product (Stavreski, 1998). An 
increase (decrease) in currency demand 
reduces (increases) the availability of 
liquidity. In the short-run, the demand for 

currency is mainly affected by seasonal 
factors or exceptional events (such as 
retrospective pay increases), the patterns 
of which could be identified from 
historical data. Separate forecasts could 
also be obtained from the banking sector to 
improve the central bank's forecasts. In the 
long run, the demand for currency depends 
upon macroeconomic variables (e.g., GDP, 
interest rates etc.), and such forecasts 
could possibly facilitate shifts in the 
demand function over time (Stavreski, 
1998). To model and forecast currency in 
circulation, generally two types of 
approaches are followed. The first 
approach is through a standard currency 
demand equation based on the theory of 
transaction and portfolio demand for 
money. Such an equation could be 
estimated in isolation (Jadhav, 1994). 
Alvan (2014) Modeled and forecasted 
currency in circulation in Nigeria for 
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liquidity management using VAR and 
VEC models and observed that exchange 
rate, bank rate, seasonality, holiday and 
election were significant in explaining 
demand for currency, Tillers Ivars (2002) 
compared the forecasting performance of 
typical linear forecasting models, namely 
the regression model and the seasonal 
ARIMA model using daily data, found that 
seasonal ARIMA model performs better in 
forecasting CIC, particularly for short-term 
horizons. Autoregressive Integrated 
Moving Average (ARIMA) models intend 
to describe the current behaviour of 
variables in terms of linear relationships 
with their past values. These models are 
also called Box-Jenkins (1976) models on 
the basis of these authors‟ pioneering 
work regarding time-series forecasting 
techniques. An ARIMA model can be 
decomposed in two parts. First, it has an 
Integrated (I) component (d), which 
represents the amount of differencing to be 
performed on the series to make it 
stationary. The second component of an 
ARIMA consists of an ARMA model for 
the series rendered stationary through 
differentiation. The ARMA component is 
further decomposed into AR and MA 
components. The autoregressive (AR) 
component captures the correlation 
between the current value of the time 
series and some of its past values. For 
example, AR(1) means that the current 
observation is correlated with its 
immediate past value at time t-1. The 
Moving Average (MA) component 
represents the duration of the influence of 
a random (unexplained) shock. For 
example, MA (1) means that a shock on 
the value of the series at time t is 

correlated with the shock at t-1. ARIMA 
models produce accurate forecasts based 
on the historical patterns of the time series 
data. ARIMA belongs to the class of linear 
models and can represent both stationary 
and non-stationary data. ARIMA models 
do not involve the dependent variable; 
instead they make use of information in 
the series to generate the series itself. 
Stationary series is the one which vary 
about a fixed value and non-stationary 
series do not vary about a fixed value 
(Box-Jenkins 1976). 

Methodology 

Autoregressive (AR) Process 

Let Yt represent a time series, then 
(Yt-δ) = α1 (Yt-1-δ) +εt          (1)                                                   

 
Where δ is the mean of Y and εt which is 
an un correlated random error term with 
mean zero and constant variance σ2 (it’s a 
white noise ) then we say that Yt follows a 
first order autoregressive, or AR(1), 
stochastic process. Here the value of Y at 
time t depend on its value in the previous 
time period and random term but if we 
consider this model    
 

(Yt-δ) = α1 (Yt-1-δ) + α2 (Yt-2-δ) + εt       (2)                                           

    
Then we say that Yt follows a second-
order autoregressive AR (2) process. That 
is the value of Y at time t depends on its 
value in the previous two time periods, 
where the Y value are being expressed 
around their mean value δ. In general, we 
can have  
 

(Yt-δ) = α1 (Yt-1-δ) + α2 (Yt-2-δ) +…. + αp 

(Yt-p-δ) + εt                                  (3)  
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                     In which case Yt is a pth-order, or AR (p) 
process. 

 
                       Equation (3) can also be written as  

 Yt = Ʈ+ α1 Yt-1 + α2 Yt-2 +…+ αp Yt-p + εt 

Where Ʈ = ( 1-∑ ௣ߙ
௜ i) δ 

Therefore, an AR model is simply a linear 
regression of the current value of the series 
against one more prior value of the series. 
The value of P is called the order of the 
AR model. The model can be analyzed 
with one of various methods, including 
standard linear least square (OLS) 
techniques. 
 

Moving Avarge (MA) Model 

Another common approach for modeling 
univariate time series data is the MA 
model. Suppose we model Yt as follows  
 Yt = Ø + βo εt + β1 εt-1                           (4)                                                                                                        
 

           Where Ø is a constant and εt, is the random 
error shock. Here Yt is equal to a constant 
plus a moving averages of the current and 
past error term. Thus, we say that Yt 

follows a first-order moving averages, or 
an MA (1) process. If Yt  is model as  
 Yt = Ø + βo εt + β1 εt-1 + β2 εt-2 
 

then it is an MA (2) process. More 
generally  
Yt = Ø + βo εt + β1 εt-1+ β2 εt-2 +…+ βp εt-p                                                                

(5) 
 

Then Yt is an MA (p) (i.e moving averages 
of order p). Therefore an MA process is 
simply a linear combination of white noise 
error terms. 
 
 

Autoregressive and Moving Avarages 
(ARMA) Process 
 

It is quite likely that Yt has characteristics 
of both AR and MA process and is 
therefore ARMA. Thus, Yt follows an 
ARMA (1, 1) process if it can be written 
as 
  
  Yt = w + α1 Yt-1 + βo εt + β1 εt-1                                                               
(6) 
 
That is Yt is linear of one AR and one MA 
term, where w is a constant term. In 
general, in an ARMA (p,q) process; there 
will be p autoregressive and q moving 
averages terms.    
 

ARIMA Model 

The Univariate Autoregressive Moving 
Average (ARMA) model is a time series 
medel that uses past and current values of 
the dependent variable to produce 
forecasts of the variable. The technique 
generates that this identified correlation 
will continue into the future. In this way, it 
becomes possible to obtain good 
approximation of the behavior of a 
variable by a purely statistical approach. 
Based on the Box-Jenkins (1976) 
modeling technique, ARMA methodology 
seeks to establish a parsimonious 
relationship, using as few parameters as 
possible. For example to forecast the 
values of a series y, using the ARMA 
technique, the general model specification 
for the series is expressed a 
yt = (a1L+a2L2+…+apLP) yt + 
(1+b1L+…+bq Lq) et                                                             

(7) 
Which can be expressed as    
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Where P and q = the number of lags for 
autoregressive (AR) and moving average 
(MA) processes respectively;  
et = an error process, with et ~N(0,1) 

L =the lag operator on the processes; 
defined as Ln yt= yt-n or L yt = yt-1 

The specification can be further extended 
to include explicit modelling of seasonal 
factors observed in the data. Apart from 
specifying seasonal dummy variables, the 
pure time series ARMA Specification is 
extended to the Seasonal Autoregressive 
Moving Average (SARMA). Detail 
definition of ARIMA models are stated as 
follows. To determine the appropriate lag 
lengths of the processes, examination of 
the autocorrelation (ACF) and Partial 
autocorrelation (PACF) functions is 
necessary, as these functions give the 
relationship between data points, and 
indicates the memory of the data 
generation process.  
An ARIMA-seasonal model is denoted 
ARIMA(P,D,Q) , where P is the order of 
auto regression in the seasonal model, D is 
the order of differencing, Q is the order of 
the moving average in the seasonal model 
and S is the seasonal length.  
A seasonal-ARIMA (P, D, Q) S model is 
given by 

 (1-β1-…-βpLsp)(1-Ls)D yt = (1-Ф1Ls-…-
ФQLQS) εt                                                               (8) 

 
 
 

Statistical Test 
 

Augmented Dickey Fuller (ADF) Test 

This test was first introduced by Dickey 
and fuller (1979) to test for the presence of 
unit root (s) 

 Δy = αyt-1 + β1Δyt-1 + β2Δyt-2 + … + 
βpΔyt-p                                                                         (9) 

The hypothesis testing 

Ho: α = 0 (the series contains unit roots) 

H1: α < 0 (the series is stationary) 

Decision Rule: 

Reject the null hypothesis (Ho) if the test 
statistic is less than the asymptotic critical 
values. 

KPSS Test (Kwiatkowski Phillips 
Schmidt Shin Test) 

This test is used to test for stationary in 
level (i.e. mean) by considering 

Yt = Xt + Zt                                (10)                                                                

The integration properties of a series Yt 
may be investigated by testing: 
Ho: Yt ~t 
H1: Yt ~ t 
That is, the null hypothesis that the data 
generating process (DGP) is stationary is 
tested against a unit root and KPSS. 

Model Selection Methods 

The most famous Information Criteria are 
Akaike Information Criteria (AIC), the 
Bayesian Swartz Information Criteria 
(SIC) are considered for model selection. 
These criteria are computed using the log-
likelihood estimates. Given the criteria 
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values of two or more models, the model 
satisfying minimum AIC or SIC is most 
representatives of the true model and, may 
be interpreted as the best approximating 
model among those being considered 
(Dayton 2003, Hamadu and Adeleke, 
2009).  Let r, k, n and ll be response 
variable, the number parameters, the 
number of observations and the maximum 
likelihood function respectively. The 
Akaike Information Criteria is 

22 ll kA IC
n n

    
 

               (11)                         

The Schwartz Bayesian information 
criteria is an alternative the AIC that 
imposes a large penalty for additional 
coefficients. It is given as: 

l n2 l l k nS I C
n n

    
 

          (12)    

The main reason for preferring the use of a 
model selection procedure such as SIC in 
comparison to traditional significance tests 
is the fact that, a single holistic decision 
can be made concerning the model that is 
best supported by the data in contrast to 
what is usually a series of possibly 
conflicting significance test. Moreover, 
models can be ranked from best to worst 
supported by the data at hand, thus, 
enlargeing the possibilities of 
interpretation (for more insights see 
Dayton, 2003, Hamadu and Ibiwoye, 
2010). 

Empirical Analysis 

 

                  Figure 1: A plot of Currencies in circulation in Nigeria (2006-2015)             

From Figure 1 the  pattern exhibits trend 
behaviour because the trend pattern exist  
when the data generally exhibit random 
fluctuations, a time series may also show 
gradual shifts or movement  to relatively 

higher or lower over a longer period of 
time. If a time series plot exhibits this type 
of behaviour, we say that trend pattern 
exists. Therefore, figure 2 delineate that 
trend pattern exist
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                   Figure 2: A plot of the log difference of currencies in circulation (2006-2015) 

The above figure depicts that the series is 
stationary in terms of mean and variance 
that is, this portrait that there is no any 
variability between the pattern of the 
series. Decision rule: Since the KPSS of 
the differenced currency in circulation is 
(0.049) < critical value (0.120) at 10% 
level of significant, this implies that the 
series is stationary at integrated of order 
one. A  time series is said to be stationary 

if its mean and variance are constant over 
time and the value of the covariance 
between the two time period depends only 
on the distance or gap or lag between the 
two times periods and not the actual time 
at which the covariance is computed. In 
short, if a time series is stationary, its 
mean, variance and auto covariance (at 
various lags) remain the same no matter at 
what point we measure them.            

 

Unit Root Test 

Table 1: KPSS test statistics and critical values 

 

 

 

Table l indicates that the test statistics 0.15046 > 0.120 we reject H0 and conclude that the 
series is not stationary and therefore integrated of order one makes the series stationary. 

  

The Augmented Dickey Fuller (ADF) Test 

Test 
statistics 

1%  critical 
values 

5% critical values 10%  critical value  P value 

0.15046 0.216 0.148    0.120    0.049 
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Table 2: Augmented Dickey Fuller with Constant 

 estimated value of (a – 1) -0.044213 
 test statistic: tau_c(1) -1.98082 
 asymptotic p-value 0.2956 
 1st-order autocorrelation coeff. for 
e 

-0.005 

  lagged differences: F(24, 69) 7.354 [0.0000] 
Since the asymptotic p- value 0.2956 > critical region 0.05 we do not reject the null 
hypothesis H0 and therefore conclude that the series is stationary, 

 

Table 3: Augmented Dickey Fuller with Constant and Trend 

  estimated value of (a – 1)  -0.191778 
  test statistic: tau_ct(1) -1.98082 
  asymptotic p-value 0.2956 

 
1st-order autocorrelation coeff. for e -0.077 

 
lagged differences: F(12, 92) 10.589 [0.0000] 

Since the asymptotic p- value 0.2956 > critical region 0.05 we accept the null hypothesis H0 and therefore conclude that the 
series is stationary. 

Test for Autocorrelation of Currencies in Circulation 

Before we can determine the estimate of 
the parameter for the time series we first of 
all identify the order of the model, the 
autocorrelation function (ACF) and partial 
autocorrelation function (PACF) factor 
plot which can help to identify the pattern 

in the stationary series of currency in 
circulation, the idea is to identify the 
presence of AR and MA components in 
the residuals 
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                          Figure 3: Autocorrelation Function (ACF) of currencies in circulation 

 

 

         Figure 4: partial Autocorrelation Function (PACF) of currencies in circulation 

Figure 3 and 4 shows that, since there are spikes in the plots outside the significant region we 
conclude that the residuals are not random. This implies that, there  is information available 
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in residuals to be extracted by AR and MA models, 12 ARIMA (p, d, q) models were 
examine from which, based on the model selection criteria of AIC and BIC, the appropriate 
model is selected.                    

                                             Table 5: Postulated models and evaluation 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
In the case of ARIMA (p,d,q) models and evaluation  ARIMA (5,0,0) has the highest value of 
AIC and BIC followed by ARIMA (5,1,1), ARIMA (3,1,1), ARIMA (1,1,3), ARIMA (1,1,2), 
ARIMA (2,1,1), ARIMA (1,1,1),ARIMA (2,1,3), ARIMA (2,1,2), ARIMA(3,1,3), ARIMA 
(3,1,2) and  lastly ARIMA (1, 1, 0) which has the minimum value of AIC and BIC, therefore  
it served as the best model.  
                         
                            Table 6: Parameter estimate of the fitted ARIMA model 

    Δ 10462.1 5157.89 2.0284 0.0425 
 

    α1 −0.263713 0.091ε5413 −2.8808 0.0040 
 

 
                                                  Table 7: Parameter estimate and criterion 
 

  

 

 

MODEL ARIMA (p d q) AIC BIC 
ARIMA (1,1,0) 2580,13 2588.15 
ARIMA (1,1,1) 3001.3 3009.64 
ARIMA (1,1,2) 3002.16 3013.28 
ARIMA (1,1,3) 3002.93 3016.83 
ARIMA (2,1,1) 3001.76 3012.88 
ARIMA (2,1,2) 2989.82 3003.72 
ARIMA (2,1,3) 2991.72 3007.85 
ARIMA (3,1,1) 3003.59 3017.48 
ARIMA (3,1,2) 2982.79 2999.46 
ARIMA (3,1,3) 2984.79 3004.24 
ARIMA (5,0,0) 3036.41 3055.95 
ARIMA (5,1,1) 3006.07 3025.53 

Mean dependent var 10799.95       S.D. dependent var 73698.99 

Mean of innovations −47.90789        S.D. of innovations 70938.19 
Log-likelihood −47.90789          Akaike criterion 3002.136 
Schwarz criterion 3010.473            Hannan-Quinn 3005.521 
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From Table 6 and 7, Schwarz information criterion has the highest value followed by Hannan 
Quinn and Akaike information has the least value that is why ARIMA (1,1,0) served as the 
best model with minimum value of AIC and BIC.                    
                                                   
                         

  Table 8: A Forecasts of Currencies in circulation (2016 – 2018) 

 

 

 

 

 

 

 

 

 
 

Table 8 shows the forecast of currency in 
circulation from 2016 to 2018 where by the 
year   2018 has the highest currencies in 
circulation. Which indicate that Nigeria will 
expect high currencies in circulation in the 
year 2018. 
 

Conclusion 

This research investigates monthly 
currencies in circulation in Nigeria from 
2006 to 2015. The aim is to Model and 
forecast currencies in circulation in Nigeria 
with different types of ARIMA family 
models. The result from all the models was 
obtained and ARIMA (1, 1, 0) served as the 
best model among the 12 ARIMA models. 
And also the research proposed the ARIMA 
model for currencies in circulation (CIC), 
the model evaluates the performance and 

forecast three year observation (i.e. from 
2016 to 2018) of the process and the results 
shows a significant increase of currencies in 
circulation in Nigeria from 2016 to 2018 
experience to never has. The research can 
serve as step to observe the Currencies in 
circulation in Nigeria. Specified period data 
can be tested by future researchers by 
developing new and more models to capture 
the effect and prediction of the currency 
behaviour circulated in Nigeria. 
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