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ABSTRACT 
The second order initial value problems are generally integrated numerically by development of 

numerical methods designed specifically for second order differential equations. In this work, a 

symmetric corrector method is presented capable to integrate real-life problems modeled into 

second order ordinary differential equations directly. The power series is used as a basis function 

which was interpolated and collocation was done at its second derivative of only grid points. This 

is to ensure that the hybrid points are at the y function . The resulting systems of equations is 

solved and after necessary simplifications continuous method is obtained.  Attempts were also 

made to develop predictors of the same order with the method to circumvent the inherent demerit 

of predictor methods. The method is of optimal order, symmetric, consistent, and zero-stable. The 

discrete method obtained is applied to solve real-life problems with better performance. 

Keywords: Symmetric, Optimal method, Differential system, Predictor-Corrector method.
 

INTRODUCTION 

In mathematics, mathematical modeling is a 

key tool for the analysis of a wide range of 

real-world problems ranging from physics 

and engineering to chemistry, biology and 

even economics using differential equations 

Hritonenko and Yatsenko (1999). Many of 

the principles, or laws, underlying the 

behavior of the natural world are statements 

or relations involving rates at which things 

happen and these are expressed in differential 

equations. 

This research article considered an ideal 

symmetric method for direct integration of 

general second order with initial and 

boundary conditions of ordinary differential 

equations (ODEs) of the type; 

General second order IVP 

  0 0 0 1
, , ; ( ) , ( ) (1)y f t y y y t y y t y    

                             

Special second-order IVP 

  0 0 0 1
, ; ( ) , ( ) (2)y f t y y t y y t y   

 

General second order BVP with Dirichlet 

boundary conditions 

  0 0 1
, , ; ( ) , ( ) (3)y f t y y y t y y y   

                      

General second order BVP with Newmann 

boundary conditions 

  0 0 1
, , ; ( ) , ( ) (4)y f t y y y t y y y    

                

Second-order system of equations 

 

 

1 1 1 1 1 0 0 1 0 1

2 2 2 2 2 0 2 2 0 3

, , ; ( ) , ( )

, , ; ( ) , ( )

(5)

y f t y y y t y y t y

y f t y y y t y y t y

    

    

                

It is well known that these problems (1–5), 

particularly the non-linear ones, may or may 

not be solved in a closed form. Even in those 

cases, the problems are typically reduced to 

systems of first order equations, which can be 

solved using any equivalent methods. 

Numerous authors have discussed these types 

of methods, including Olabode and Momoh 

(2016), Areo and Adeniyi (2013), and 

Kayode and Obarhua (2013), to name a few 
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Despite the traditional approach's triumphs, 

many authors were drawn to its problems, 

which led them to examine the direct method 

as an alternative to decreasing order. Obarhua 

and Kayode (2016), Kayode and Adeyeye 

(2011, 2013), and Ramos and Rufai (2019). 

A two-step two-point implicit hybrid 

predictor-corector method was presented by 

Kayode and Adeyeye (2013) to solve (1) 

directly. Ogunfeyitimi and Ikhile (2019) 

presented second derivative generalized 

extended backward difference formula to 

solve stiff order boundary value problems. A 

generalized cash-type second derivative 

extended backward differential formula was 

introduced by Okor et al. (2022) as a 

boundary value approach for the stiff system 

of type (4). Omole et al. (2023) have also 

proposed an algebraic order nine approach 

for solving second order boundary and initial 

value problems. 

Therefore, the methods that these authors 

have proposed are unable to directly solve 

problems (1–5) on their own, and 

furthermore, their order and accuracy are 

insufficient to handle these complex 

problems. Nevertheless, these authors have 

also introduced hybrid points at both 

f function  and y function , which 

raises the function evaluations in the 

f function  computational effort and, as 

a result, lowers the accuracy of their methods, 

Kayode and Adeyeye (2011). 

Therefore, this study was motivated by the 

setbacks caused by the increase in function 

evaluations, reduced order of accuracy. The 

interest of this study is to develop method 

with hybrid points at y function  only for 

directly solving (1–5) which is more effective 

and accurate in performance by effecting 

points in the power series used as basis 

function as the approximate solution. The 

hybrid points' position is capable of reducing 

function evaluation and increase order of 

accuracy. Additionally, the proposed method 

is made to ensure that the starting methods 

and the corrector (primary) method have the 

same order of accuracy. 

Derivation of the Method 

 This section shows the derivation of a 

continuous symmetric implicit two-point 

hybrid method for the solution of problems 

(1-5). Consider the equally spaced points on 

the integration interval given by 

0 1 1N Na x x x x b         ,                (6)                                                                                                    

with a specified positive integer step size 

given by 

1 , 1, , ;n n

b a
h x x n N N

h



       . 

Assuming the power series as the 

approximate solution  
2( 1)

0

( )
k

j

j

j

y x a x




  .                                       (7) 

The second derivative of (7) as compared 

with (1) gives 

   
2( 1)

2

2

, , ' ( 1)
k

j

j

j

f x y y j j a x






  .         (8) 

                                                                      

Equation (7) is interpolated at the grid and 

off-grid points , 0, ,1,n ix x i   
 
where 

0 1   and 1 2   . Equation (8) was 

collocated at three grid points 

, 0, 1, 2n ix x i   which resulted and 

expressed inform of matrix equation given 

below; 

AB C ,                                                  (9)   

     

     

where 
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. 

 

The values of ' ,  0(1)6ja s j   were determined, using Gaussian elimination method to be 

Substituted back into (7) and using the transformation in Obarhua (2019), 

 1

1 1
,n k

dt
t x x

h dx h
   

 
and simplifying the result gives a continuous hybrid linear 

multistep method given as; 
1

2

1 2

0 0

( ) ( ) { ( ) ( ) } ( ) ,
k k

k j n j n n j n j

j j

y x x y x y x y h x f  


   

 

                  (10)  

with the coefficients 
, ,,j is s   and 

,

j s  as functions of t
 
obtained to be 

3 2 2 3 3 2 2

2 3 3 3 3 2 2

2 2 2 2 3 2

2 3 2 2 3

0

(48 48 192 128 48 48 192 192

128 128 ) (24 24 96 96 364 364

196 196 192 192 428 24 260) (12

(2 1)( 2 )( 2 ) 12 228 96 48 48

( )

t

t

t

t t t

t

       

        

         

         



      

       

       

       



3 2 2

3 3 2 2 3 3 2

2 3 3 2 2 2 3 3 2 2

2 3 3

2 2 3 2 2 3 4 2 2 4

214 214 10

10 32 32 98 98 120) (16 16 65

65 5 6 91 24 24 60 60 49

49 16 16 )

60 60 49 49 16 16 91

   

       

             

   

           

 
 
 
 
 
   
 
         
 
         
    

      3 3 3 4

4 3 4 4 2 2 3 3 4 4

24

24 6 5 65 65 16 16

  

           

 
         

 
3 3 2 2 3 2 3

2 3 2

1 2 2 3 3 2 2 2 3

3 2 3 3 2 2 3

(128 48 192 128 ) ( 260 96 364 ) ( 10 32
2 (2 1)( 2 )

98 120) (16 65 60 )
( )

60 60 49 49 16 16 91 24
( 1)( )

24 6 5 65 65 16 16

t t t
t t t

t

      


   

           
   

       

          
         

 
      

 
       3
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3 2 2 2 2 3 3

2 3 3 2 2 2 2 2 2

3 3 3 2 2 3 2 2

3 3 2

1

(48 48 240 240 240 48 48 320 320 )

(24 24 240 240 24 740 580 580

120 120 720 720 ) (12 12 720 120
2 ( 2 )( 2 )

60 60 370

( )

t

t

t
t t t

t

         

          

          
 

    



       

       

       
 

   



2 3 3 2
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3 3

2 2 3 3 2 2 2 3

3 2 3 3 2
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( 1)( 1)
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     2 3 35 16 16  
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      316

 
   

 
2 2 2 2 2 2 2

2 2 2 2
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2

0
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368 ) ( 30 678 146 146 782 782
(2 1)( 2 )( 2 )
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( )

t

t
t t t t
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2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

1 2 2 3 3 2 2

( 36 36 12 76 36 36 112 112 )

(2 1)( 2 )( 2 ) ( 18 48 38 38 160 160 56 56 )

( 80 9 28 28 )
( )

60 60 49 49 16 16 91 24
3

t

t t t t t

t

         

           

     


          

        
 

            
      


       2 3

3 2 3 3 2 2 3 324 6 5 65 65 16 16



        

 
         

 

 
2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 3 3 2 2 2 3

3 2 3

( 12 12 4 12 12 12 16 16 )

(2 1)( 2 )( 2 ) ( 6 6 2 2 10 10 8 8 )

( 5 3 4 4 )
( )

60 60 49 49 16 16 91 24
6

24 6

t

t t t t t

t

         

           

     


           

  

        
 

            
      


      

  3 2 2 3 35 65 65 16 16     

 
       

                (11) 

The first derivatives of the coefficients are 

5 2 2 3 3 2 2

4 3 3 2 2 4 4 3 3 2

2 2 2 3 2

0

(1152 1152 4608 1152 1152 4608 4608 3072 3072

3072) ( 480 480 480 480 480 480 480 7920
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2

( )

t

t

t

t

         

         

         



       

          

        

 

2
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3 3 2 2 3 3 2

2 4 4
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5 2 2 2 2 2 2 4 3

3 2 2 3 2 2 3 2 2 3 3

2 2 3 3 3 2

1

( 1728 1728 3648 576 1728 1728 5376 5376 ) (720

720 1440 1440 7920 240 240 480 720 720
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( )
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t
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2

3 3 3 2 2 3 2 2 3 3 2 2

2 3 3 2 2 3 3 3 2 2 3 2 2

3 3 2 2 3 3 2 2 2 3
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5 91 6
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    3 3 2 3 3 2 3 3

2 2 2 2 3 3

) 24( ) 16( )

65( ) 5 91 6

        

      

      
      

                (12) 

Evaluating (11) and (12) at 1t   yields the discrete scheme 
2

2 2 1 1 1 0 2 2 1 1 0( 2 )
6

n n n n n n n n

h
y y y y y f f f                            (13)

              
with first derivative 

 2 2 1 1 1 0 2 2 1 1 0

1
( 2 )

6
n n n n n n n n

h
y y y y y f f f

h
          

                             (14)

                                                  
where 

 3 2

1 2( 2)(4 9 178 12)           

 3 2

2 2( 2)(4 9 178 12)          

3 3 2 2 3 3 3 2 2 3

1 3 3 2 2

2( 2)( 2){6 49 20 4( ) 18( )

8( ) 20( )}

             


   

        
       

 

2 2 3 3 3 2 2 3 2 2

0 3 3 2 2

( 2)( 2){21( ) 8( ) 12( ) 3 19

6 18( ) 9( ) 12}

              


     

          
           

 2 2 2 2 2 2

2 ( 2)( 2){ 6( ) 4( ) 6( ) 3 5 }                      
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314( ) 32( ) 4( ) 66( ) 428( ) 976( )

768 964 51 3

s s s s s s s s s

s s s

        


  

           
        

                (16) 

 

The values of   and   is taken at 

various points in the interval 

(0,1)   and (1, 2)   to obtain a 

particular discrete hybrid method. For 

the purpose of testing the properties 

of (13) and (14), the values are taken 

as 
1

4
   and 

7

4
   to give;

 

 
2

2 7 1 1 2 1

4 4

1
(2048 2422 2048 837 ) (7 154 7 )

837 372
n n n n n n

n n

h
y y y y y f f f   

 
       ,         

                                                                                                                                         (17) 

       

 

2 7 1 1

4 4

2 1

1
9565184 19350499 16421888 6636573

1494045

31041 363478 15417 ,
189720

n n n
n n

n n n

y y y y y
h

h
f f f

 
 

 

 
     

 

  

        (18) 
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respectively. 

The order and error constants of the 

method (17) and its derivative (18) 

are respectively confirmed to be 
5

2
6, 1.4818 10

p
p c 


     and 

5

2
5, 5.7190 10

p
p c 


    . The 

method is consistent and zero stable, 

satisfying the necessary and sufficient 

conditions for convergence of linear 

multistep methods.  

Implementation of the method
 

We require additional closed starting 

values, 0
k

  , for the evaluation of 

, 1,2, ,
n i

f i k


     since the method 

and its derivative are open, 0
k

  . 

In this work, attempts are made to 

derive the main closed predictors of 

the same order of accuracy as starting 

values. The following symmetric 

explicit predictor method and its 

derivative of the same order of 

accuracy with the corrector method 

are developed using the same 

procedure in section 2;

 
2

2 7 1 1 1 1 7

4 4 4 4

1
3328 2282 3328 2187 56 7 56

2187 729
n n n n

n n n n

h
y y y y y f f f  

   

   
         

   

                (19) 

2 7 1 1

4 4

7 1 1

4 4

1
7374464 15674029 10541440 18841005

5404077

1691096 3716789 1400792 173502
2573370

n n n
n n

n n
n n

y y y y y
h

h
f f f f

 
 


 

 
      

 

 
    

 

    (20) 

 

 

 

The main predictor (19) and its 

associated derivative (20) are each of 

order 6p   and 5p   respectively 

while their error constants 
2p

c


 are 

51.4818 10   and 
55.7190 10  

respectively. 

Taylor series expansion was 

employed to generate other explicit 

schemes for ,
n n

y y
  

  in Kayode 

and Obarhua (2015). 

 

Numerical Experiments 
Some numerical examples are presented to 

show the accuracy of the developed Hybrid 

Block Method (HBM). In the examples 

considered the absolute errors were obtained 

as ( )i iErr y y x  , where iy  is the 

approximate solution obtained using the new 

method BHM and ( )iy x  is the exact solution 

of the problem considered at the grid points.
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Problem 1: Dynamic Problem 

A 10-kg mass is attached to a spring having a spring constant of 140N/m. the mass is started in 

motion from the equilibrium position with an initial velocity of 1m/s in the upward direction and 

with an applied external force ( ) 5sinF t t . Find the subsequent motion of the mass if the force 

due to air resistance is 90xN . 

Solution: 

From the Newton’s second law 

( )mx kx ax F t                                (21)

 or 

( )a k F t
x x x

m m m
                                        (22) 

                        

When the system start with initial velocity 0
v   and initial position 0

x  at 0t  , with initial 

conditions 

0 0
(0) , (0)x x x v                                         (23) 

If 10, 140, 90m k a    and ( ) 5sinF t t . The equation of motion (21) yields 

1
9 14 sin

2
x x x t                                        (24) 

Applying the initial conditions (0) 0x   and (0) 1x    to equation (24) and solve using maple 

function to get  

Exact solution: 
2 79 99 9 13

( ) cos( ) sin( )
50 500 500 500

t tx t e e t t                                    (25)                                  

 

Table 1: Comparison Results of EAO2015 and ENM17.                               

    t                Ex s                         Cp s                    EAO2015                ENM17 

0.1      -0.064362051546        -0.064362051521          1.274442e-08         2.51324E-11 

0.2      -0.084307205226        -0.084307205211          3.044226e-08         2.64530E-11 

0.3      -0.084052253134        -0.084052253180          4.150135e-08         4.60000E-11 

0.4      -0.075293042133        -0.075293042098          4.538448e-08         4.40671E-11 

0.5      -0.063570639604        -0.063570639412          4.429806e-08         1.92371E-10 

0.6      -0.051421170694        -0.051421170420          4.046609e-08         2.74100E-10 

0.7      -0.039930529564        -0.039930529132          3.547450e-08         4.32623E-10 

0.8      -0.029498658628        -0.029498656717          3.028463e-08         1.91120E-09 

0.9      -0.020212691313        -0.020212690146          2.540758e-08         1.16734E-09 

1.0      -0.012026994254        -0.012026992356          2.107144e-08         1.89888E-09 

 

Table 1 shows the comparison of the absolute errors in Areo and Omojola (2015) and errors in the 

new hybrid predictor-corrector method for problem 1, for k=2, h=0.1. The new method has a better 
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accuracy than Areo and Omojola (2015) of the same order of accuracy.

 
Figure 1: Error plot of Areo and Omojola (2015) and that of the new method, ENM17 for Problem 

1. 

 

Problem 2. Cooling of a body 

The temperature y  degrees of a body, t  minutes after being placed in a certain room, satisfies the 

differential equation 3 0y y   . By using the substitution z y , or otherwise, find y  in terms 

of t  given that 60y   when 0t   and 35y   when 6ln 4t  . Find after how many minutes the 

rate of cooling of the body will have fallen below one degree per minute, giving your answer 

correct to the nearest minute. 

Problem formulation 2 

80
, (0) 60, (0) , 0.1

3 9

y
y y y h


      

 

Exact solution is   
1

( )
3

80 100
( )

3 3

t

y t e
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Table 2: Comparison Results of EOO2018, EO2019 and ENM17 for Problem 2.                             

t  Ex s  Cp s     EOO2018

5, 2p k   

   EO2019

6, 2p k 

 

    ENM17, 

6, 2p k 

 
0.1 59.125762679520165000 59.125762679520165487 3.55e-11 2.344791e-13 4.87021e-16 

0.2 58.280186267509812000 58.280186267509812120 4.58e-11 2.202682e-13 1.20035e-16 

0.3 57.462331147625591000 57.462331147625596700 7.00e-11 3.935749e-12 5.70104e-15 
0.4 56.671288507811937000 56.671288507811938412 6.50e-12 2.704951e-12 1.41252e-15 
0.5 55.906179330416379000 55.906179330416374360 3.33e-11 7.599112e-12 4.64026e-15 
0.6 55.166153415412850000 55.166153415412858000 4.20e-11 1.569518e-12 8.01700e-15 
0.7 54.450388435647511000 54.450388435647431560 4.38e-11 2.756872e-12 7.94415e-14 
0.8 53.758089023057302000 53.758089023057356000 1.07e-10 4.375392e-11 5.40034e-14 
0.9 53.088485884845809000 53.088485884845636000 6.58e-11 6.474571e-11 1.73041e-13 
1.0 52.440834948634382000 52.440834948633421000 6.69e-10 9.100178e-11 9.61140e-13 

 

Table 2 shows the comparison of the absolute errors in Omole and Ogunware (2018), Obarhua 

(2019) and errors in the new hybrid predictor-corrector method for problem 2, for k=2, h=0.1. The 

new method has a better accuracy than Omole and Ogunware (2018) and Obarhua (2019) of the 

same order of accuracy and block methods. 

 

 
Figure 2: Error plot of Omole and Ogunware (2018), Obarhua (2019) and that of the new hybrid 

method for Problem 2.
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Problem 3: (Two body Problem)   

                                                 

2

1 1 1

1

2 2 2

2 2

1 2

, (0) 1, (0) 0,

, (0) 0, (0) 1

y
y y y

r

y
y y y

r

r y y


   


   

 

 

Exact solution is  1 2( ) cos ; ( ) siny t t y t t   

   The maximum errors exact computedy y  obtained with the method for Problem 3, the execution 

time in microseconds et   and the total steps taken are compared with that of [9] two step two point 

method. 

 

Table 3: Shows the numerical solution of our method compared with the method of EKA2013 and 

EOETAL2023. 

                              EKA2013                             EOETAL2023                           ENM17  

TOL 

                  TS                 MAXE                    e
t                                                            TS            MAXE                e

t  
210
        33         9.763298E-08       635          1.35782080E-11            33      1.3452E-13        55 

410
        55         4.170707E-10      1346         1.96524162E-10            55      2.2415E-16        58 

610
        74         2.100171E-12      2614         3.79459225E-10            74      4.3425E-17        62 

810
       130        3.214551E-15      2788         5.62369776E-10           130     3.3256E-17       120 

1010
      278        2.473336E-17      5590         7.45242199E-10           278     5.4132E-18       140 

 

Table 3 shows the comparison of the absolute errors in Kayode and Adeyeye (2013), Omole et al. 

(2023) and errors in the new hybrid predictor-corrector method for problem 3. The new method 

has a better accuracy and execution time than Kayode and Adeyeye (2013) and Omole et al. (2023). 
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Figure 3: Error plot of Kayode and Adeyeye (2013), Omole et al. (2023) and that of the new 

hybrid method for Problem 3.  

Discussion of Results 

 

Table 1 shows the outcome of the newly 

developed method in comparison to Areo and 

Omojola's (2015) method of the same order 

of accuracy. The outcome demonstrates that 

the new 

method outperformed Areo and Omojola's (

2015). 

Problem 2 in Omole and Ogunware (2018) 

and Obarhua (2019) was solved using the 

new method (17). Despite having larger 

stepnumbers, Table 2's results are more 

accurate than those of Omole and Ogunware 

(2018) and Obarhua (2019). 

For the purpose of comparison with Kayode 

and Adeyeye (2013)'s 3-step method and 

higher order of accuracy and Omole et al. 

(2023)'s of order nine, the new method was 

similarly applied to solve Problem 3 in both 

studies. The proposed method outperformed 

Kayode and Adeyeye (2013) and Omole et al. 

(2023) in terms of accuracy and efficiency, 

according to the data displayed in Table 3. 
Additionally, error plots were utilized to 

assess the new method's smoothness, 

consistency, and convergence in comparison 

to the methods that were already in use and 

were shown Figures 1-3. The new method's 

smooth, consistent, and convergent nature 

over the considered existing method is 

demonstrated by the curves in Figures 1-3. 

 

Conclusion 

A new hybrid predictor-corrector method for 

the direct solution of universal second order 

initial value problems of ODEs has been 

developed in this study. The method is 

developed in such a way that the hybrid 

points are at y function  which enhanced 

the reduction of function evaluation.Two 

real-world engineering problems that were 

modeled as second order (IVPs) were solved 

using the new method, and Tables 1 and 2 
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demonstrate how much more accurate the 

new method is than the previous ones. The 

Tables 3 demonstrate that the novel method 

outperforms the methods of Kayode and 

Adeyeye (2013) and Omole et al. (2023) in 

terms of efficiency and provides a better 

approximation. The curves illustrated the 

efficacy and efficiency of the method. As a 

result, any type of second order ordinary 

differential equation can be solved using this 

method. 

 

 

 

Abbreviations 

TOL – Tolerance 

TS – Total Steps taken 

MAXE – Magnitude error of the computed 

solution 

e
t – The execution time taken in 

microseconds 

Ex s Exact solution 

Cp s   Computed solution 

2015EAO Areo and Omojola (2015) 

2018EOO Omole and Ogunware (2018) 

2019EO Obarhua (2019) 

2013EKA Kayode and Adeyeye (2013) 

2023EOETAL Omole et al. (2023) 

17ENM New method (17)
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