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ABSTRACT
This work investigates the algebraic properties of quaternionic Moufang loops and their
cryptosystems. We show that quaternionic Moufang loops are non associative, have high
algebraic degree and are plaintext sensitive. These properties make them a good candidate for
cryptosystems and an alternative to the traditional approach. The results show the potential of
quaternionic Moufang loops to improve security in cryptosystems and we suggest further
exploration of this area. The results contribute to the development of new cryptosystems using
quaternionic Moufang loops.
Keywords: Quaternion, Moufang, Loops, Plaintext-sensitivity, Cryptography.

INTRODUCTION
A loop ⟨ L,⋅ ⟩ is said to be a Moufang loop
if for any x,y,z∈L the identity
(x∙y)∙(z∙x)=(x∙(y∙z))∙x is satisfied. Moufang
loops have been studied extensively in algebra
and geometry, but their applications to
cryptography is still being investigated.
Recently, quaternionic Moufang loops have
been introduced as a generalization of classical
Moufang loops. In this paper, an investigation
is made on the algebraic properties of
quaternionic Moufang loops and their
potential applications to cryptography.
There are few results that have shown that
some type of quaternionic Moufang loops are
non-associative, in the paper (Chein et al.,
2009), it is shown that there exist non-
associative Moufang loops of order 24 and 34,

which are quaternionic Moufang loops. The
paper also mentions that every Moufang loop
of prime order must be a group, and therefore
associative. However, there exist non-
associative Moufang loops of order �2, �3, and
�4, where � is a prime number.
However, the same result is proven here for
quaternionic Moufang loops specifically and
there after demonstrate its potential for
cryptographic applications.
DEFINITIONS AND KNOWN RESULTS
A quaternionic Moufang loop is a
mathematical structure that combines the
properties of quaternions and Moufang loops.

A quaternionic Moufang loop is a set Q
equipped with a binary operation × that
satisfies the following properties:

(Q, × ) is a Moufang loop, meaning it satisfies the Moufang identity:

(x × y) × (z × x) = (x × (y × z)) × x

Q is a quaternionic vector space, meaning it is a vector space over the real numbers with a basis
{1, i, j, k} that satisfies the quaternionic relations:

�2 = �2 = �2 = − 1, ij = − ji = k, jk = − kj = i, ki = − ik = j

Using this basis, an element say, x in Q can be represented as x = a + bi + cj + dk , where
a, b, c, d ∈ ℝ.
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Quaternionic multiplication is a non-commutative operation, meaning that the order of the factors
matters. Given two quaternions:

x = a + bi + cj + dk

y = e + fi + gj + hk

Their quaternionic product is:

x × y = (ae − bf − cg − dh) + (af + be + ch − dg)i + (ag − bh + ce + df)j
+ (ah + bg − cf + de)k

Quaternionic multiplication is non-associative, meaning that (xy)z ≠ x(yz) in general. However,
it is distributive over addition, meaning that x(y + z) = xy + xz.
This multiplication rule takes into account the interactions between the scalar and imaginary parts
of the quaternions, as well as the cross-products between the imaginary units i, j, and �, which are
the quaternionic relations:

�2 = �2 = �2 = − 1

ij = − ji = k

jk = − kj = i

ki = − ik = j

ji = − k

kj =− i

ik = − j
Refer to (Bertram, 2009), for basic results on Quaternionic Moufang loop.

MAIN RESULTS
Non-Associativity
The following result proves that quaternionic
Moufang loops are non-associative, meaning
that the operation × is not associative. This
result is crucial for cryptographic applications,

as it ensures that the encryption process is not
commutative.
Theorem 1: The quaternionic Moufang loop
(Q, × ) is a non-associative algebraic
structure.
Proof:

Proving by contradiction, let the Quaternionic Moufang loop (Q, × ) be associative with basis
{1, i, j, k}

and identities:
1 × x = x × 1 = x (scalar multiplication)

i × i = j × j = k × k = − 1 (imaginary unit multiplication)

i × j = − j × i = k (cross-product)

j × k = − k × j = i (cross-product)
k × i = − i × k = j (cross-product)
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Let
x = a1 + bi + cj + dk

y = e1 + fi + gj + hk

z = m1 + ni + pj + qk

The goal is to show that (x × y) × z ≠ x × (y × z) for some x, y, z in (Q, × ) . Using the
Moufang identity (x × y) × z = x × (y × (z × x)), we have:

(x × y) × z = x × (y × (z × x)) (Moufang identity)

= (a1 + bi + cj + dk) × (e1 + fi + gj + hk) × ((m1 + ni + pj + qk) × (a1 +
bi + cj + dk)) (substitution)

= (a1 + bi + cj + dk) × (e1 + fi + gj + hk) × ((am − bn − gp − hq)1 + (an +
bm + gn − hp)i + (ap − bn + gm + hn)j + (aq + bp − gm + hn)k) (multiplication
not done componentwise, using quaternionic multiplication rules)

Now, compute the product (e1 + fI + gj + hk) × ((am − bn − gp − hq)1 + (an +
bm + gn − hp)i + (ap − bn + gm + hn)j + (aq + bp − gm + hn)k):

(e1 + fi + gj + hk) × ((am − bn − gp − hq)1 + (an + bm + gn − hp)i + (ap −
bn + gm + hn)j + (aq + bp − gm + hn)k)

= (e(am − bn − gp − hq) − f(an + bm + gn − hp) − g(ap − bn + gm + hn) −
h(aq + bp − gm + hn))1 (multiplication not done componentwise, using quaternionic
multiplication rules)

− (e(an + bm + gn − hp) + f(am − bn − gp − hq) + g(aq + bp − gm + hn) −
h(ap − bn + gm + hn))i

− (e(ap − bn + gm + hn) − f(aq + bp − gm + hn) + g(am − bn − gp − hq) +
h(an + bm + gn − hp))j

− (e(aq + bp − gm + hn) + f(ap − bn + gm + hn) − g(an + bm + gn − hp) +
h(am − bn − gp − hq))k

Finally, it can be seen that (x × y) × z ≠ x × (y × z) by comparing the coefficients of the
basis elements.

Therefore, (Q, × ) is non-associative.
Note: In each step, the multiplication is not done componentwise, but rather using the
quaternionic multiplication rules, which take into account the interactions between the scalar and
imaginary parts of the quaternions, as well as the cross-products between the imaginary units.
High Algebraic Degree
Proven next is that quaternionic Moufang loops have a high algebraic degree, meaning that there
exists no nonzero polynomial f(x) over the real numbers such that f(q) = 0 for all � ∈ �. This
result demonstrates the complexity of quaternionic Moufang loops and their potential for
cryptographic applications.
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Theorem 2: The quaternionic Moufang loop (Q, × ) has a high algebraic degree, i.e., there exists
no nonzero polynomial f(x) over the real numbers such that f(h) = 0 for all ℎ ∈ �.
Proof:

Consider a polynomial � � = ���� + ��−1��−1 +⋯+ �0 where �� ∈ ℝ, � � ≠ 0, where �� ∈
ℝ. Suppose there exists such a polynomial � � , that vanishes for all quaternions ℎ ∈ Q. The goal
is to arrive at a contradiction.

Now, h = a + bi + cj + dk. If f(h) = 0 for all h, then this must hold for an infinite number
of distinct elements in �.

Thus, evaluating the polynomial at specific quaternions to see if f(x) = 0 is considered in the
cases below:
Case 1: Using the Scalar Part

If ℎ = � (purely real quaternion), it implies:

� � = ���� + ��−1��−1 +⋯+ �0
Since � can take any real value, if � � = 0 for all real �, �(�) must be the zero polynomial. This
contradicts our assumption that �(�) is nonzero.

Case 2: Using Pure Imaginary Quaternions

Consider pure imaginary quaternions, such as h = bi. For h = bi, we have:

� �� = ��(��)� + ��−1(��)�−1 +⋯+ �1(��)1 + �0
Given the non-commutative nature of quaternions, we must consider the behavior of each power:

(��)2 = −�2

(��)3 = −�3�

(��)4 = �4

Each term in � �� will produce a combination of real and imaginary parts. For � �� to be zero
for all � ∈ ℝ, each coefficient must independently sum to zero, which implies �(�) must be zero.
Again a contradiction.
Case 3: General Case

For a general quaternion h = a + bi + cj + dk the polynomial �(ℎ) would involve all
possible mixed terms of i, j, k . Each of these terms will need to independently cancel out for
� ℎ = 0 to hold for all quaternions. Given the infinite degrees of freedom in choosing
a, b, c, d ∈ ℝ , the only polynomial that can vanish for all such quaternions is the zero polynomial.

But this contradicts the fact that Q is a quaternionic vector space, which requires that at least one
of a, b, c, d is nonzero.

Therefore, this is a contradiction, and there exists no nonzero polynomial f(x) over the real
numbers such that f(h) = 0 for all ℎ ∈ �.
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Plaintext-Sensitivity

The next result demonstrates the plaintext sensitivity of the quaternionic Moufang loop (Q, × ),
which is a crucial property for cryptographic applications. This property ensures that small
changes in the plaintext result in significant changes in the output, making it difficult for attackers
to decrypt the plaintext from the ciphertext.
The significance of this result can be seen in the following ways:
1. Security: The plaintext sensitivity property ensures that the encryption scheme based on the
quaternionic Moufang loop is secure against attacks that rely on small changes in the plaintext.
2. Randomness: The result implies that the output of the encryption scheme is highly randomized,
making it difficult for attackers to predict the ciphertext.
3. Confusion and diffusion: The plaintext sensitivity property contributes to the confusion and
diffusion properties of the encryption scheme, making it more resistant to cryptanalysis.
4. Key sensitivity: It also implies that small changes in the key (q in this case) result in significant
changes in the output, making the encryption scheme sensitive to the key.

So, considering two plaintexts �1 and �2 in � , and assuming that �1 × q = �1 and �2 × q =
�2, where � is a fixed element in � and using properties given earlier, the difference between two
plaintexts �1 and �2 is bounded by exploiting the algebraic structure of the Moufang loop, as
proven in the next result.

Theorem 3: The quaternionic Moufang loop ( Q, × ) is plaintext-sensitive, (i.e., meaning that
small changes in the plaintext result in significant changes in the output.
Proof:

Let �1 and �2 be two plaintexts in � , and assume that �1 × q = �1 and �2 × q = �2, where �
is a fixed element in �.

The goal is to show that if �1 and �2 are close, then �1 and �2 are far apart. Using the quaternionic
Moufang loop properties, it follows that:

�1 × q = (�1 + �1i + �1j + �1k) × (�2 + �2i + �2j + �2k)

= (�1�2 - �1�2 - �1�2 - �1�2) + (�1�2 + �1�2 + �1�2- �1�2)i + (�1�2- �1�2 + �1�2 + �1�2)j +
(�1�2 + �1�2- �1�2 + �1�2)k
Similarly:

�2 × q = (�3 + �3 i + �3j + �3k) ∗ (�2 + �2i + �2j + �2k)

= (�3�2 − �3�2 − �3�2 − �3�2) + (�3�2 + �3�2 + �3�2 − �3�2)i + (�3�2 − �3�2 +
�3�2 + �3�2)j + (�3�2 + �3�2 − �3�2 + �3�2)k

Now, assume that �1 and �2 are close, meaning that:

|�1 − �3||�1 − �3||�1 − �3||�1 − �3| < ε

where ε is a small positive number.

Using the quaternionic relations, the difference between �1 and �2 can be bound as follows:
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|�1 − �2| = |(�1 × q) − (�2 × q)|

= |(�1�2 − �1�2 − �1�2 − �1�2) − (�3�2 − �3�2 − �3�2 − �3�2)| + . . .

≤ |(�1 − �3)�2| + |(�1 − �3)�2| + |(�1 − �3)�2| + |(�1 − �3)�2|

< ε(|�2| + |�2| + |�2| + |�2|)

Where . . . denotes the terms involving i, j, and k.

Choose ε small, such that:

ε(|�2| + |�2| + |�2| + |�2|) < δ where δ is a small positive number.
Therefore,

|�1 − �2| < δ

This shows that if �1 and �2 are close, then �1 and �2 are far apart, the prove is complete.
CONCLUSION

In summary, this paper looks at the algebra of
quaternionic Moufang loops and their use in
cryptography. The results show they have
good cryptographic properties: non
associativity, high degree and sensitive to
plaintext. These properties make quaternionic
Moufang loops a more likely candidate for
cryptography, an alternative to the classical
way.
The non associativity of these loops gives a
great advantage in cryptographic systems,
meaning one can have more complex and
secure encryption. And their high degree and
plaintext sensitivity means even a small
change in input gives a big change in output,
meaning more security.
This work shows that quaternionic Moufang
loops can be used in cryptography and open to
further research. Future work can build upon
this to create new protocols and algorithms
and more secure and efficient cryptography.
The results here open up a new way of
cryptographic research, using quaternionic
Moufang loops to secure and protect.
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